SamGrid Integration of SRMs

Robert D. Kennedy and Andrew Baranovski (Fermilab Computing Division)

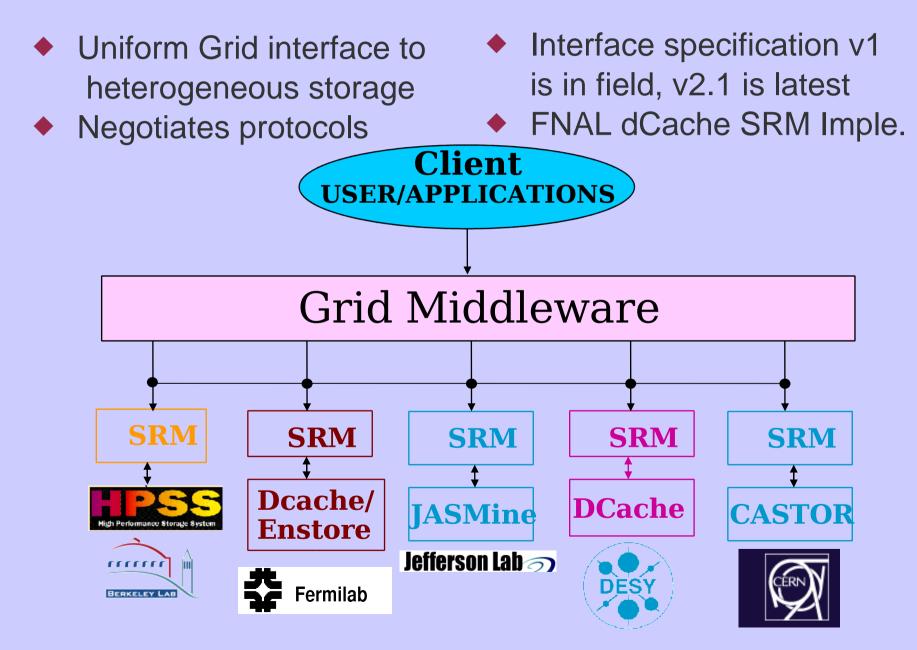
for the Fermilab SamGrid project

CHEP04, Interlaken, Switzerland 27 September 2004 v1.1

Big Picture

SamGrid is the Fermilab Run II Data Handling framework

- In production use at D0 since 1999, SamGrid will soon be in production at CDF, prototype-level testing at MINOS.
- SamGrid has been extended to the Grid. At CHEP04:
 - Job and Information Management Talk 038
 - Monitoring and Information Services Poster 451
 - Meta-data Services Talk 500
 - Integration of SRMs Talk 460 (this talk)
- Major "non-Grid" developments too Talk 462 (db server), Posters 468 and 113 (CDF deployment, testing), ...


A large team of contributors to SamGrid to acknowledge...

Outline

- Introduction to SRM Storage Resource Manager
- Introduction to SamGrid terms, issues
- Integration Goals uniform storage, abstract locations
- Initial Adaptation first part of multi-stage process to insure stable operations while integrating new functionality
- Status and Future Work, Application example

Summary

Storage Resource Manager

SRM Functions, Parameterization

- Abstracts basic file system operations
 - Space Management functions srmReserveSpace()
 - Data Transfer functions srmCopy()
 - Directory functions srmMkdir()
 - Permission functions srmSetPermission()
 - Status functions srmStatusOfCopyRequest()
- Fermilab dCache SRM have parameterized the internal storage device interface to allow re-use of the "Grid layer". Greatly simplifies delivering SRMs for other storage devices. Unix file system example exists, others in the works.

CHEP04 talk 107 "Storage Resource Manager"

SAM Introduction

- SAM started as a DataGrid, pre-dates modern Grid design
- Station resources managed together. DataGrid "node".
- Project manages file delivery for 1+ consumers (apps)
- Dataset Definition meta-data spec. of desired data files
- Snapshot the actual list of files specified by dataset
- Stager agent performing file transfers to local disk cache
- Cache a quota-enable disk cache (specific to SAM)
- Replica DB catalog of file replica *locations*
- Project runs on a station, requests delivery of a dataset snapshot to a disk cache accessible to the interested consumers. Stagers arrange the file transfers to that cache.

CHEP00 talk C241, "...Design and Features of SAM"

R. D. Kennedy and A. Baranovski

SAM Issues

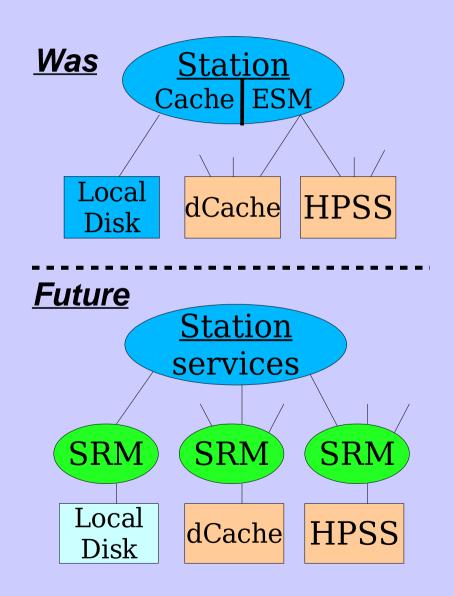
• SAM works. With experience, some issues recognized:

Diversification of "cache" options

- Originally, files consumed from local disk cache. Other storage valid for locations, files copied to disk cache.
- Interest in alternatives NFS, HPSS, dCache, AFS,
- "External Storage Mechanism" developed, works, but...
- Code and configuration specific to each storage system.

(Replica) Location abstraction

- Locations of files in disk cache contain the node name and pathname of the file in cache. Not robust to equipment failures, directory re-organization, etc.
- Can be more than one location per physical file (dCache dcap doors) for same protocol. Can be confusing.

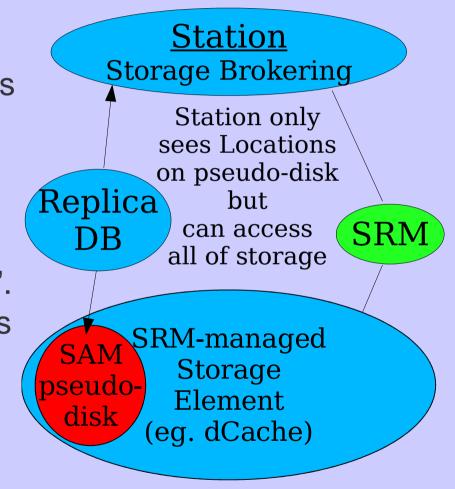

R. D. Kennedy and A. Baranovski

Uniform Storage Interfaces

- Uniform storage interface eliminate specialized code
- Centralized configuration of shared storage services

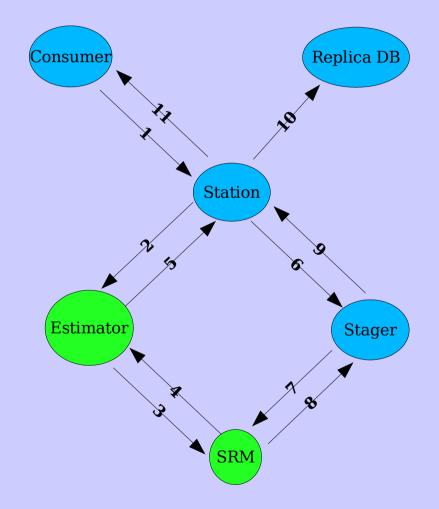
Constraints: (some of many)

- maintain production system
- must support other dev too
- old and new stations must be able to work together for smooth deployment
- Challenge: Indistinct interfaces in station components


Abstract Locations

- Abstract Locations avoid direct hardware references.
 SAM caches run on desktop and CPU farm IDE disks too.
- Unique Locations per physical file avoid confusion
- **Constraints**: (some of many)
 - support old and new locations for smooth deployment
 - subtleties in data management decisions and locations
- Old-style cachehost.fnal.gov/hardware-directory
- New srm://srmhost.fnal.gov:8843/namespace-filepath
- TURL protocol://storagehost.fnal.gov/transfer-path.dat
 - New: can change physical location inside SRM and still be accessibility to consumers. NFS mounts, disk fails.
 - SRM provides location "indirection" in a sense.

R. D. Kennedy and A. Baranovski


Initial SRM Integration - Overview

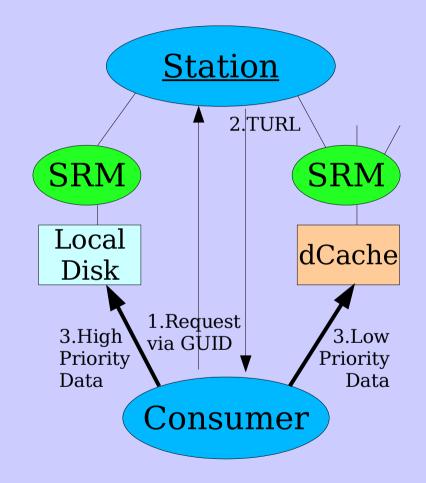
- Initial integration stage re-interpret, re-use existing functionality, prove concepts Configure SRM managed storage elements as if they were station consumption nodes with a disk per access method of some "size". Pseudo-station disks, nodes describe physical cache el
 - ement accessible by consumers with common data access requirements.

Initial SRM Integration - Sequence

- 1) start project
- 2) get priority
- 3) srm get meta-data
- 4) return meta-data
- 5) return priority
- 6) request transfer
- 7) srm get/copy
- 8) srm get/copy done
- 9) transfer request complete
- 10) register new SRM replica
- 11) file is available

Status and Future Work

Project Status


- prototype working now with dCache gridftp transfers
- ready to try other storage, transfer protocols (dcap)
- small mismatch in SAM, SRM error handling approach

Future Work

- modularize station components into distinct services
- re-implement SAM cache with SRM interface
- fully adopt modern GRID GUID/SURL/TURL model, integrating transfer protocol into data mgmt decisions.
- move to symmetric data stage and store services
- Iower priority full adaptation to web services. SAM's CORBA infrastructure works well enough for now.

Application – Multi-tier Caching

- User desktop analysis optimize access to high priority data by storing locally, but read low priority data from large, central dCache.
- Station routing configurable by dataset, SRM locations
 High priority data copied to local disk, then that TURL given to the consumer
- Low priority data left in dCache, and TURL given.

Summary

- SamGrid in the process of integrating the use of SRMs as a uniform storage interface to numerous storage systems
- Project is ambitious must consider that SamGrid is:
 - 24 x 7 x 365 production system
 - used by running experiments for data logging
 - undergoing important (unrelated) parallel development
 - already has code specific to different storage devices whose idiosyncrasies must be taken into account.
- Initial integration tests successful, working to expand this to other protocols, storage systems. Onward, onward 8[^]).