
SAMGrid Integration of SRMs

R. D. Kennedy, A. Baranovski, G. Garzoglio, R. Illingworth, A. Kreymer,
A. Kumar, L. Loebel-Carpenter, L. Lueking, A. Lyon, W. Merritt, I. Terekhov,

J. Trumbo, S. Veseli, S. White, FNAL, Batavia, IL 60510, USA
M. Burgon-Lyon, R. St.Denis, Glasgow University

S. Belforte, INFN, Trieste
U. Kerzel, Karlsruhe University

V. Bartsch, M. Leslie, S. Stonjek, Oxford University
F. Ratnikov, Rutgers University
A. Sill, Texas Tech University

Abstract

SAMGrid is the shared data handling framework of the
two large Fermilab Run II collider experiments: DZero and
CDF. In production since 1999 at D0, and going into pro-
duction at CDF, the SAMGrid framework has been adapted
over time to accommodate a variety of storage solutions
and configurations, as well as the differing data process-
ing models of these two experiments. This has been very
successful for both experiments. Backed by primary data
repositories of approximately 1 PB in size for each exper-
iment, the SAMGrid framework delivers over 100 TB/day
to DZero and CDF analyses at Fermilab and around the
world. Each of the storage systems used with SAMGrid,
however, has distinct interfaces, protocols, and behaviors.
This led to different levels of integration of the various stor-
age devices into the framework, which complicated the ex-
ploitation of their functionality and limited in some cases
SAMGrid expansion across the experiments’ Grid.

In an effort to simplify the SAMGrid storage inter-
faces, SAMGrid is adopting the Storage Resource Manager
(SRM) concept as the universal interface to all storage de-
vices. This simplifies the SAMGrid framework, expecially
the implementation of storage device interactions. It pre-
pares the SAMGrid framework for future storage solutions
equipped with SRM interfaces, without the need for long
and risky software integration projects. In principle, any
storage device with an SRM interface can be used with the
SAMGrid framework. The integration of SRMs is an im-
portant further step towards evolving the SAMGrid frame-
work into a co-operating collection of distinct, modular
grid-oriented services. This report outlines how the SRMs
are being integrated into the existing SAMGrid framework
without disturbing on-going operations.

THE BIG PICTURE

SAMGrid [1] is a general data handling framework orig-
inally designed for experiments with peta-byte-sized dis-
tributed data processing needs. It has been in production
at DZero since 1999 and is going into production at CDF.
SAMGrid is also being tested for use at MINOS and CMS.

To better support globally distrobuted data processing in
these experiments, there are a number of efforts underway
to extend the original SAM framework to the Grid, hence
the revised project name SAMGrid. Related to SAMGrid
at CHEP04, there are presentations on exploiting Job and
Information Management (JIM) for DZero simulation pro-
duction [2], adapting SAMGrid to a new Monitoring and
Information Services framework [3], and the evolution of
SAMGrid meta-data services to support more experiments
[4]. In addition, there have been some major SAMGrid de-
velopment projects unrelated to the Grid per se, such as an
revision of the middle tier database access component (db
server) [5] and deployment of SAMGrid in the CDF en-
vironment [6, 7]. The SAMGrid project has enjoyed the
contributions of many, as well as the dedication of core de-
velopers, to evolve a working production data management
system in situ.

While the SAMGrid framework has been adapted over
time to accommodate a variety of storage solutions, each of
these storage systems has distinct interfaces, protocols, and
behaviors. In an effort to simplify the SAMGrid storage in-
terfaces, SAMGrid has adopted the Storage Resource Man-
ager (SRM) concept as the universal interface to all stor-
age devices. After introducing SRMs and SAM, this paper
describes the “SAMGrid integration of SRMs” project, its
status, and plans for future work.

INTRODUCTION TO SRM

The SRM is a uniform Grid interface to heterogeneous
storage. It also negotiates transfer protocols between a
client and a storage device. In the SRM model, client ap-
plications may manipulate and access storage through Grid
middleware among a variety of existing storage systems
with SRM interfaces. Implementations exist, for example,
for HPSS, dCache, JASMine, and Castor. In the context
of this paper, there are two distinct uses for the term SRM.
First, there is the interface specification [8] for all SRMs,
an effort in which Fermilab personnel are involved. Sec-
ond, there is a Fermilab-developed SRM implementation
[9] to the dCache storage system [10].

One can think of SRMs as abstracting basic file system

operations. For instance, there are space management op-
erations including an srmReserveSpace(). There are basic
data transfers operations like srmCopy(). There are direc-
tory operations like srmMkdir(). Permission operations are
included, as well as status and metadata query operations.

The Fermilab dCache-SRM team has parameterized the
internal storage system interface to allow re-use of the
“Grid layer” of the implementation with only modest ef-
fort. This should greatly simplify the development of alter-
native SRMs that are immediately compliant with the SRM
interface specification. As a proof of concept, this team
has implemented an SRM on top of a plain Unix file sys-
tem. Other implementations are planned as well, in part to
support the integration of SRMs into the SAMGrid project.

INTRODUCTION TO SAM

The original SAM framework was an early DataGrid
[11]. However, since SAM’s design predates modern Grid
design, its nomenclature and design principles differ with
what many might be familiar. The physical architecture
of SAM is built around astation, which is a collection of
resources that are managed together. One can think of a
station as DataGrid node. A station might consist of a sin-
gle host computer with disk, or it may span many hosts in a
reconstruction farm. SAM uses aprojectto manage file de-
livery for one of moreconsumers, or user applications. The
original intent for the project concept was to allow multiple
consumers to read the same files in a coordinated fashion.
That has proven with experience to be a rare use-case, but
the concept is retained to shield consumers from file de-
livery error handling. Adataset definitionis a meta-data-
based specification of the data files a consumer intends to
use. Asnapshotis the actual list of files that match the
criteria of a dataset definition at a specific point in time.
A stager is an agent of the station that actually performs
file transfers, in particular to local disk cache for access by
consumers.SAM cacheis a quota-enabled local disk cache
managed by the SAM station software. Finally, the replica
database component of SAM is a catalog of file replicalo-
cationsin the entire, global SAM system.

The data processing model of SAM is as follows: a user
starts a project appropriate for his/her consumers, as well as
the consumers, on a station. The project requests delivery
of a dataset snapshot (list of files) to local SAM cache disk
accessible to interested consumers. Stagers arrange the ac-
tual file transfers to that cache. When files are available
in local cache, the interested consumers are notified and
they may begin processing the files. Information is main-
tained in the SAM meta-data system to track what files are
consumed, what consumers were run, the versions of code
used, and so on, to make this process both reproducible and
robust. For instance, after running a large job consuming
thousands of files, one can query the database to see if any
part of the job failed or if any files could not be delivered.
If so, then one can run a “clean-up” job which attempts to
re-try any part of the job that failed.

UNIFORM STORAGE INTERFACES

While SAM works well, with real-world experience we
have recognized a few issues that the adoption of SRM
use may address. SAM was originally designed to support
only the local SAM cache as the file “consumption” stor-
age system, and that limitation is deeply ingrained in the
implementation. Files can have locations in other storage,
in tape-based mass storage systems for instance, but such
files have to be transferred to local SAM cache before a
consumer can access them. Over time, customers have re-
quested station configurations supporting other “consump-
tion” storage, such as NFS mounted disks, HPSS, dCache,
and the AFS file system. AnExternal Storage Mechanism
(ESM) was developed in SAM to allow these configura-
tions to be supported, but that mechanism led to code and
configurations issues that are specific to each storage sys-
tem.

Station
Cache ESM

Local
Disk dCache HPSS

Local
Disk dCache HPSS

SRM

Station
services

SRM SRM

Was

Future

Figure 1: A SAM station and its storage - before and after
SRM integration

The SRM provides a uniform interface to all storage, as
represented in Fig. 1 on page 2. The adaptation of SAM-
Grid to use SRMs eliminates specialized code for each stor-
age system, and simplifies the adaptation to new storage
systems in the future. It also permits centralized configu-
ration of storage systems, rather than each SAMGrid sta-
tion having to maintain storage system configuration infor-
mation. Without SRMs, each CDF station using dCache
must be configured with the the host name and port num-
bers of the CDF dCache dcap doors. If these doors were to
change, and they have before, every station would have to

be stopped, reconfigured, and restarted.
While there are clear benefits, SAMGrid integration of

SRMs is a heavily constrained project. The SAMGrid sys-
tem is a production system, in use around the world, and is
undergoing much unrelated development at the same time.
Any adaptation must be compatible with a gradual deploy-
ment plan, allowing old and new station versions to inter-
operate for an extended period of time. Finally, there is a
challenge to identify distinct interfaces of station compo-
nents since SAM was not originally developed with well-
defined internal service interfaces. The data routing ser-
vice, for instance, does not query the local cache service
for its content through a well-defined method or message.
Rather, it directly reads the cache content data structure in
memory.

ABSTRACT LOCATIONS

The SAM team has also recognized a subtle problem
with the treatment of locations which the SRM may help
address. Locations of files in SAM cache include the hard-
ware hostname and file system directory of the file in that
SAM cache. These locations are stored in a global replica
catalog, depended upon potentially by consumers around
the world. Since SAM caches are located on a wide vari-
ety of hardware, from robust file servers to low-end IDE
disks on farm CPU nodes, from centrally managed Fer-
milab systems to remotely administered university desk-
tops, this approach leaves the SAMGrid system vulnerable
to meta-data inconsistencies due to simple equipment fail-
ures, directory re-organization, local system administration
policy changes, and NFS mount point variations. Projects
may attempt to transfer a file from a no longer valid loca-
tion, until that location is fixed or removed from the replica
DB. Another consequence of the ESM implementation is
that a single physical file can have more than one location
(for the same transfer protocol) if there is more than one
way to access a file in a storage device. This is possible for
example where dCache systems have more than one dcap
door, as is the case in the CDF dCache system. While this
“N locations to 1 replica” is not problematic in general, it
causes some problems for SAMGrid at present since SAM
does not yet fully separate the concepts of locations and
Grid transfer URLs.

The adaptation to use SRMs can help provide more ab-
stract locations by providing something like a layer of indi-
rection in the replica location specification. Instead of the
specific hardware host and directory of the file, one speci-
fies an SRM-oriented location by identifying the SRM and
an abstract specification of the file in that SRM’s names-
pace. In principle, the physical location of the fileinsidethe
SRM can change, and yet the file still be accessible to con-
sumers, since the SRM is responsible for internally track-
ing the physical location of its files. In addition to spec-
ifying the SRM and the abstract file reference, the client
also specifies what transfer protocols it can utilize. With
this, the SRM translates the abstract “namespace-filepath”

into a protocol-specific transfer URL, as demonstrated in
the example below. In addition to the constraints men-
tioned before, there are subtleties in how locations affect
data management decisions that have to be addressed in the
SAMGrid adaptation to use SRMs.

Old-Style Location

cachehost.fnal.gov/hardware/directory

New-style Location

srm://srmhost.fnal.gov:8843/namespace-filepath

Resulting TURL

protocol://storagehost.fnal.gov/transfer-filepath.dat

SRM INTEGRATION

To manage the risk involved in reworking a produc-
tion system, we have chosen to integrate the use of SRMs
in SAMGrid in several stages. Initially, we have re-
interpreted existing features and re-used existing function-
ality to provide a proof of concept in the SAMGrid con-
text. The question is not whether SRMs work (they do), but
whether their benefit will be fully realized in the technical
and historical context of SAMGrid. In this approach, we
configure SRM-managed storage elements as if they were
station “consumption nodes” with a virtual cache disk per
access method of some size. These pseudo-station disks
and nodes describe a physical cache element (like dCache)
accessible by consumers with common data access require-
ments. The former data processing sequence still occurs,
but instead of moving files into local SAM caches, a sta-
tion configured in this way “moves” the file at the meta-
data level into its pseudo-cache and give the consumer a
transfer URL pointing back into the actual physical cache
element (for instance, a dCache dcap TURL). One can then
tune the “size” assigned to the pseudo-disks to control the
number of simultaneous transfers or the total volume of
meta-data stored for the physical cache element. In the
large CDF dCache system, for instance, we may prefer the
pseudo-disk size to be less than the actual dCache size (see
Fig. 2 on page 4) to improve some aspects of performance
at the expense of the station having incomplete knowledge
of what is actually “in cache” at any one moment.

STATUS AND FUTURE WORK

We have the initial stage of SRM integration working
with dCache gridftp transfers. We are ready to try other
storage elements and transfer protocols (dcap for instance).
There does appear to be a small mis-match in the error han-
dling “world-view” between SAM and SRM for handling
the case of instantaneous high loads which is being worked
on before more extensive deployment. While this work has
proceeded more slowly than expected, it is also proceeding

SRM-managed
Storage
Element

(eg. dCache)

SAM
pseudo-

disk

Station
Storage Brokering

SRM

Station only sees
Locations on pseudo-disk,

but can access all of
storage.

Replica
DB

Figure 2: Pseudo-disk size less than actual storage size:
station makes decisions based on only the pseudo-disk lo-
cations, though all files accessible.

without interfering with SAMGrid operations or other high
priority development efforts.

We are beginning to plan the next stage in this integra-
tion project. We now have a proof-of-concept in hand to
compare future work against as we more profoundly re-
work the existing SAMGrid station software. We can now
begin to modularize the station components into distinct
services with well-defined interfaces. Working with the
Fermilab dCache-SRM team, we plan to re-implement the
local SAM cache component with an SRM interface, some-
thing that will be simplified by the SRM implementation
on top of a plain Unix file system. Then, SAM will adopt
to the modern Grid GUID/SURL/TURL model and inte-
grate the list of transfer protocols available into the data
management decisions in the station. We plan to evolve to
treat SAMGrid handling data staging and data storage sym-
metrically, whereas now each are separate services. We do
not today see the adoption of a Web Services framework
for SAMGrid as providing enough benefit since our exist-
ing SAM CORBA infrastructure works well enough. We
are however organizing the new station design into a more
service-oriented model, which will simplify Web Service
adoption in the future should it prove worthwhile.

SUMMARY

In an effort to simplify the SAMGrid storage inter-
faces, SAMGrid is adopting the Storage Resource Manager
(SRM) concept as the universal interface to all storage de-
vices. This has simplified the SAMGrid framework, expe-

cially the implementation of storage device interactions. It
prepares the SAMGrid framework for future storage solu-
tions equipped with SRM interfaces, without the need for
long and risky software integration projects. In principle,
any storage device with an SRM interface can be used now
with the SAMGrid framework. The integration of SRMs
is an important further step towards evolving the SAMGrid
framework into a co-operating collection of distinct, mod-
ular grid-oriented services.

ACKNOWLEDGEMENTS

We would like to thank Fermilab Computing Division
for its on-going support of the SAMGrid project, and espe-
cially the CCF, CEPA, and Run II Departments. We would
also like to thank everyone at D0 and CDF who has con-
tributed to this project. This project is sponsored by DOE
contract No. DE-AC02-76CH03000.

REFERENCES

[1] http://projects.fnal.gov/SAMGrid

[2] G. Garzoglioet al, “Experience producing simulated events
for the DZero experiment on the SAM-Grid”, CHEP’04,
Abstract 038, Interlaken, September 2004.

[3] A. Lyon et al, “SAMGrid Monitoring and Information Ser-
vice and its Integration with MonALisa”, CHEP’04, Ab-
stract 451, Interlaken, September 2004.

[4] W. Merritt et al, “Housing Metadata for the Common Physi-
cist Using a Relational Database”, CHEP’04, Abstract 500,
Interlaken, September 2004.

[5] S. Veseliet al, “The SAMGrid Database Server Component:
Its Upgraded Infrastructure and Future Devleopment Path”,
CHEP’04, Abstract 462, Interlaken, September 2004.

[6] V. Bartschet al, “Testing the CDF DIstributed Computing
Framework”, CHEP’04, Abstract 113, Interlaken, Septem-
ber 2004.

[7] S. Stonjeket al, “Deployment of SAM for the CDF ex-
periment”, CHEP’04, Abstract 468, Interlaken, September
2004.

[8] http://sdm.lbl.gov/srm-wg

[9] T. Perelmutov et al, “Storage Resource Manager”,
CHEP’04, Abstract 107, Interlaken, September 2004.

[10] http://www.dcache.org

[11] V. White et al, “The Data Access Layer for D0 Run II:
Design and Features of SAM”, CHEP’00, Abstract C241,
Padova, February 2000.

