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Abstract 
As modern High Energy Physics experiments require 

more distributed computing power to fulfil their demands, 
the need for efficient distributed online services for 
control, configuration and monitoring in such experiments 
becomes increasingly important. 

This paper describes the experience of using standard 
Common Object Request Broker Architecture (CORBA) 
[1] middleware for providing a high performance and 
scalable software, which will be used for the online 
control, configuration and monitoring in the ATLAS [2] 
Data Acquisition (DAQ) system. It also presents the 
experience, which was gained from using several 
CORBA implementations and replacing one CORBA 
broker with another. 

Finally the paper introduces results of the large scale 
tests, which have been done on the cluster of more then 
300 nodes, demonstrating the performance and scalability 
of the ATLAS DAQ online services. These results show 
that the CORBA standard is truly appropriate for the 
highly efficient online distributed computing in the area 
of modern HEP experiments. 

INTRODUCTION  
ATLAS is one of the four experiments in the Large 

Hadron Collider (LHC) [3] accelerator at CERN. The 
ATLAS detector consists of several sub-detectors, which 
can be operated in parallel and fully independently from 
each other.  

The ATLAS Data Acquisition (DAQ) system transports 
event data from the 1600 detector read-out links to mass 
storage. In order to provide the required functionality and 
to handle the physics data rate, the DAQ system will use 
several hundreds processors connected altogether over a 
high-speed network with each of them running several 
DAQ software applications. 

The Online Software project is part of the ATLAS 
DAQ, which is responsible for the control, configuration 
and monitoring of the ATLAS DAQ system. This is a 
challenging project which has to meet a number of strong 
requirements. The size and distributed nature of the 

ATLAS DAQ implies that the Online Software has to be 
scalable and high performance distributed software. The 
long life time of the ATLAS experiment requires that this 
software has to be easily extendable and maintainable. In 
order to meet these requirements it has been decided to 
use CORBA based communication middleware as a basis 
for the DAQ Online Software implementation.  

The Online Software provides a number of software 
services, which are grouped into three categories:  
configuration, control and monitoring services. The 
services are clearly separated one from another and have 
well defined boundaries. For each service there is a low-
level software component, which provides both the 
service implementation and API. 

 

Figure 1: Online Software architecture 

The distributed facilities of the Online Software 
services are implemented on top of the Inter Process 
Communication (IPC) software package, which is a 
wrapper above CORBA and the OMG Naming Service 
[4] (see Fig. 1). 

RATIONALE OF CORBA 
CORBA is an open standard for distributed object 

computing, which has been proposed in 1991 by the 
Object Management Group (OMG) [5]. It standardises 
many common network programming tasks such as object 
registration, location and activation; parameter 
marshalling and demarshalling; operation dispatching and 
so on. 

CORBA supports most of the widely used 
programming languages, like for example C, C++, Java; 

Inter Process Communication 

CORBA 

OMG Naming Service 

Control 
Services

Configuration 
Services 

Monitoring 
Services



as well as  a number of scripting languages like for 
example Python. This gives to software developers a large 
flexibility in choosing the most appropriate programming 
language for the distributed systems implementations. 

Different implementations of the CORBA standard are 
able to communicate with each other. This 
interoperability is one of the most important advantages 
of CORBA. This feature provides another level of 
flexibility by allowing using different CORBA brokers 
for example in C++ and Java applications. 

All CORBA compliant brokers are compatible at the 
source code level. CORBA based user programs can be 
compiled with almost no changes using different CORBA 
brokers. This is very important in the context of the long 
lifetime of the ATLAS experiment. Using CORBA one 
relies to the widely used and mature standard, which 
allows replacing one CORBA broker with another with 
minimal changes to the software programs. 

CORBA provides a high-level object-oriented 
paradigm for the distributed programming hiding low 
level aspects of the communication implementation. 
However the API and communication model, which are 
provided by CORBA, are considerably complex. This 
complexity is a result of the flexibility, which CORBA 
offers for the distributed application development. 
However the drawback of this flexibility is a significant 
learning curve for CORBA, which makes its use 
unproductive in the international scientific communities, 
in which people are changing each other very often. In 
order to overcome this issue, a light-weight software 
wrapper, called Inter Process Communication (IPC), has 
been implemented on top of CORBA in the scope of the 
ATLAS DAQ project. The IPC drastically simplifies the 
distributed programming interface by narrowing the very 
wide spectrum of features, provided by CORBA, to a 
reasonably small subset of functions, which are used by 
the ATLAS DAQ Online Software. 

INTER PROCESS COMMUNICATION 
PACKAGE 

The IPC is a software package, which provides several 
important functionalities to the other Online Software 
services: 

•a simple API for the core CORBA facilities 
•a simple API for the OMG Naming Service 
•transparent cache for the remote object references 

Core CORBA functionalities 
There are several actions, which have to be done by any 

CORBA application: ORB initialisation, Root and 
specific Portable Object Adapters (POAs) creation, POA 
Manager creation, CORBA objects registration and 
initialisation, etc. IPC completely hides all these actions 
either by doing them implicitly (when it is appropriate) or 
by providing very simple function calls for them. For 
example the fragment of the C++ code, which is shown 
on Fig. 2, does the ORB initialisation as well as the Root 
POA and POA Manager objects creation. Parameters, 

which are passed to the IPCCore::init function, are used 
to transmit some ORB specific configuration attributes 
from the application command line to the IPC run time. 

 

Figure 2: IPC initialisation in C++ 

In order to develop a service using CORBA one has to 
provide the service description using the OMG Interface 
Definition Language (IDL) [6]. The IDL is a purely 
declarative language with the syntax very similar to C++, 
which makes it easy to learn and use. When the IDL 
description for the service is ready one has to invoke an 
appropriate IDL compiler, which translates the IDL 
declaration to the necessary programming language 
definitions in accordance with the OMG specification. 
Then the service can be implemented in that 
programming language. IPC respects this procedure and 
any IPC based service has to have an interface declared in 
IDL. Fig. 3 shows one of the real Online Software IDL 
interfaces. 

 Figure 3: Run Control IDL interface 

This is the interface to the Run Control (RC) service 
[7], which defines the rc::controller interface. This 
interface has a single method called command, which is 
used to send commands to any RC controller of the DAQ 
system. 

Fig. 4 shows the implementation of the Run Control 
interface in C++. The POA_rc::controller class, which is 
used as template parameter of the IPCNamedObject class, 
is a class generated by the IDL to C++ compiler 

application. It has the same name for any CORBA 
compliant broker. 

Figure 4: Run Control implementation in C++ 

IPC provides a very simple API for creating CORBA 
objects and registering them with the appropriate POA.  
This API completely hides the POA class and performs 

module rc { 
  interface controller : ipc::servant { 
     void command( in string cmd ); 
  } 
} 

int main( int argc, char ** argv ) { 
   IPCCore::init( argc, argv ); 
   … 
} 

class RCController :  
  public IPCNamedObject<POA_rc::controller>  
{ 
  RCController( const IPCPartition & p,  
                const std::string & name ) 
   : 
IPCNamedObject<POA_rc::controller>(p,name) 
                  { publish(); } 
 
  ~RCController() { withdraw(); } 
 
  void command( const char * cmd ) { … } 
}; 



the necessary POA operations like POA creation, objects 
registration, objects activation and so on implicitly.  

IPC provides two base classes for CORBA object 
implementations, which perform all the necessary POA 
interactions. For example any instance of the class, which 
inherits the IPCNamedObject (as in Fig. 4), can be 
connected from any other IPC based application via the 
name, which is provided at the object construction. Fig. 5 
shows how an instance of the IPCNamedObject based 
class can be created. After that any other application can 
get a reference to the “MyCtrl” controller in the 
“MyPartition” partition in order to invoke remote 
methods of that controller. 

Figure 5: IPC named object creation  

IPC provides also another class called IPCObject, 
which can be used as a base class for the anonymous 
CORBA object implementations. An instance of a class, 
which inherits the IPCObject, can be passed to another 
program only explicitly, as parameters of another remote 
operation. This facility is used for example to implement 
the subscription/call-back pattern. 

IPC Partition 
A DAQ Partition represents a self contained instance of 

the ATLAS DAQ system for the piece of the ATLAS 
detector, which can perform data taking activity 
independently and concurrently with the other detector 
parts. 

The IPCPartition class puts a notion of the DAQ 
Partition into the programming language context. As one 
can see from the example on Fig. 5 any named IPC object 
may belong to one and only one IPC Partition. This 
allows having several concurrent instances of the same 
service for different DAQ Partitions. For example one can 
unambiguously create two RC controllers with the same 
name if they belong to different partitions. The 
IPCPartition class provides an isolated communication 
domain, which has no interference with any other IPC 
Partitions.  

The IPC Partition implementation is based on the OMG 
Naming service, which provides a way of binding 
CORBA object reference with a name. Any application 
can interact with the Naming Service for getting a 
reference to any registered object by providing the object 
binding name. The IPCPartition class together with the 
IPCNamedObject provides a simple wrapper for the 
Naming Service API. The IPCNamedObject class has two 
related server side methods: publish, which binds the 
object to the name in the context of the specific partition; 
and withdraw, which removes that binding. Fig. 4 shows 
how these methods can be used in the constructor and 
destructor of the distributed service implementation class. 
Partition and the object name are provided as parameters 
of the IPCNamedObject constructor (see Fig. 4). 

The IPCPartition class provides the client counterpart 
for the publish method, which is called lookup. Fig. 6 
shows how to use this method for getting the remote 
object reference and invoking operation on that object. 

Figure 6: IPC named object creation  

Note the use of the same partition and object names as 
in the Fig. 5. The rc::controller and rc::controller_var 
classes are generated by the IDL compiler. They have 
exactly the same signatures for any CORBA compliant 
broker. 

Caching of remote object references 
Establishing connection between client and server 

processes is one of the most expensive operations in the 
scope of remote communication. If a remote operation is 
invoked relatively often, then it is much more efficient to 
keep the connection open all the time. For this purpose 
the IPC library implements a cache for remote object 
references, which prevents connection from been closed 
and re-established in between subsequent requests to the 
same remote object. 

In most cases this cache facility is completely 
transparent for a user application, but there is one case, in 
which user program assistance is required in order to 
handle this situation properly. Such a situation occurs if 
computer, on which one of the IPC based services is 
running, had died and that service is restarted on another 
machine. In this case the object reference, which is kept 
in the client programs cache, becomes invalid. An attempt 
to invoke any operation using this reference will result in 
the IPCCacheExpired exception. User has to catch this 
exception and call the IPCPartition::lookup function again 
in order to refresh the remote object reference. Fig. 7 
shows how this has to be done.  

Figure 7: Handling the IPCCacheExpired exception 

Other IPC facilities 
IPC provides some other facilities, which simplify 

distributed services development and maintenance. For 
example it provides a common base interface for all the 

IPCPartition p( “MyPartition” ); 
again: 
  rc::controller_var rc =  
         p.lookup<rc::controller>( “MyCtrl” );
 
  try { 
    rc -> command( “MyCommand” ); 
  } 
  catch( IPCCacheExpired & ) 
  { 
    goto again; 
  } 

IPCPartition p( “MyPartition” ); 
RCController * rc; 
rc = new RCController ( p, “MyCtrl” ); 

IPCPartition p( “MyPartition” ); 
rc::controller_var rc =   
        p.lookup<rc::controller>( “MyCtrl” );
 
rc -> command( “MyCommand” ); 



other services specific IDL interfaces. This interface is 
called ipc::servant and must be inherited by any specific 
IDL interface (see Fig. 3). The ipc::servant defines 
several common operations for all the Online Software 
services. For the moment this interface provides a way of 
retrieving some general service parameters like the 
service owner, starting time and host machine. If 
necessary this interface can be transparently extended for 
providing more information. 

IPC is also used for implementing many useful features 
transparently for the other Online Software services. For 
example the Access Management service is currently 
being implemented. It will provide any DAQ application 
with some sort of authorisation token. The IPC can 
transparently attach such a token to the context of a 
remote method invocation on a client side. At the server 
side the IPC can extract and verify this token (again 
transparently for the server program) and pass it to the 
Access Manager, which can make a decision of either to 
allow or refuse the requested operation. 

CORBA BROKERS 
Initially the Online Software has been using the 

implementation of CORBA, which is called Inter 
Language Unification (ILU) [8] for C++ and the 
JavaIDL† broker for Java. The results of using ILU have 
been found quite satisfactory, but in the middle of 2002 
Xerox company, which implemented ILU, has dropped 
the ILU support. The ILU was not evolving any more and 
therefore missed several useful features, which appeared 
recently in the new versions of the CORBA standard. It 
has been decided to evaluate several other CORBA 
brokers in order to find a replacement for the ILU.  

This evaluation has been reported in [9] and based on 
it’s results, ILU has been replaced with another CORBA 
broker, called omniORB [10]. We have found also some 
drawbacks and problems for the JavaIDL broker and 
replaced it with JacORB [11].  

Replacing the Java broker required no modification to 
the code of the Online Software services while transition 
to the new C++ broker was not transparent. Normally 
CORBA compliant C++ brokers differ only by the names 
of the header and library files. However migration from 
the ILU to the omniORB required more efforts because 
the ILU is not fully CORBA compliant. In fact the need 
of using a CORBA compliant broker was one of the 
reasons for moving to the omniORB. Any possible future 
transition to another CORBA compliant C++ broker will 
be straightforward. 

PERFORMANCE AND SCALABILITY 
MEASUREMENTS 

The unprecedented size of the ATLAS detector puts 
very strong performance and scalability requirements to 

                                                
† JavaIDL was a name of the CORBA broker integrated to 
JDK. Now it has different name. 

the control, configuration and monitoring services, which 
are provided by the Online Software for the ATLAS DAQ 
system. In addition those requirements are not the same 
for different types of the services. 

The Control services are dealing normally with short 
network messages, which can be sent for example to the 
Run Control controllers in order to change their states, or 
to the Process Manager agents in order ask them to start 
certain processes. Such operations are performed rarely 
and the total amount of data, which is transferred over 
network, is small. But the scalability aspect is very 
important because normally these operations are applied 
concurrently to a large number of the remote applications. 

The situation is similar for the Configuration services, 
which provide configuration data for a large number of 
applications at the same time. The important difference is 
that the size of the data transferred over network is 
significantly larger than for the Control services. 

The requirements for the Monitoring services differ 
because monitoring is permanently in use during data 
taking activity for transferring large amount of data 
between different DAQ applications. 

In order to study the performance of different services 
as well as of the integrated DAQ infrastructure, a large 
test bed has been set up. The test bed consisted of more 
than 300 PCs, which were connected over 100 MB 
Ethernet.  A number of independent tests have been 
performed for different services on that test bed. The next 
sections present some results of these tests. 

Control services 
Starting with booted but idle machines, the tests for the 

Control services simulate the start of data taking activities 
by creating all the necessary processes in the defined 
order and then cycling the system through the states 
prescribed by the Run Control to simulate a data taking 
activity. At the end of these cycles, the system is shut-
down in an orderly manner and all the DAQ related 
processes are destroyed. Timing values were written to 
file and subsequently loaded into a spreadsheet. These 
tests have been done using a cluster of more than 300 
computers. All the tests have been repeated a number of 
times and plots show mean times for each operation. 
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Figure 8: RC Start transition time 

Fig. 8 shows the time for performing single Run 
Control transition, which is called Start. This is a simplest 



RC transition, which consists from two steps. At each step 
all the controllers are synchronised, i.e. they all receive a 
respective command, change their state according to them 
and report a new state to their parents.  

Controllers, which have been used for these tests were 
a dummy ones, which did nothing during transition. The 
time, which has been measured for that transition, is twice 
of the time of distributing the RC commands to all the 
controllers and receiving a confirmation from them for 
the transition completion. More information about the 
results of the scalability tests for the Online Software 
Control services can be found in [7]. 

Configurations services 
The Configurations service is used to keep the set of 

parameters describing TDAQ and to provide access to it. 
The database is read simultaneously by many DAQ 
applications during the data taking session initialisation. 
Each application may read a number of parameters from 
the database. A total amount of data to be read may vary 
from several bytes up to tens of Mbytes for different 
applications. The total number of applications in the final 
DAQ system will be at the order of several thousands. A 
single server is not capable of implementing the required 
database service for performance reasons and therefore it 
will be necessary to run several instances of them. The 
main goal of the configurations service tests was to find 
out the required number of Configuration servers for the 
final ATLAS DAQ system. There are several tests series, 
which have been performed using 220 computers from 
the test bed. All the tests have been repeated several times 
and plots show mean time for these repetitions. Fig. 9 
shows mean time for reading single simple object from 
the database.  
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Figure 9: Time for reading single object 

Fig. 10 shows results of the other tests, which have 
been performed to measure the time for reading 
composite objects from the database (consists of 2042 
small nested objects) and for reading large objects, which 
have size of 1, 4, 8 and 16 MB. 
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Figure 10: Time for reading composite and large objects 

More information about the results of the scalability 
tests for the Online Software Control services can be 
fount in [12]. 

Monitoring services 
The Information Service (IS) is one of the Monitoring 

services provided by the Online Software. It is used to 
share user defined information between DAQ 
applications. It is responsible for serving a large number 
of clients and sustaining a high rate of the monitoring data 
exchange. Two different test series have been performed 
for the IS. In both series Information Service has been 
represented by a single application running on the 
dedicated computer (dual PIV 2.2 GHz). All the clients 
for that IS were equally distributed over another 220 
computers.  

The first test series has been used to measure the mean 
time of a single information update operation for a single 
IS server in case it is used concurrently by a large number 
of information providers. In these tests every information 
provider performed one information update every second. 
Fig. 11 shows the results of these tests. 
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In the second series of tests each information provider 
made a fixed number of information updates sequentially 
with no delay between them. Fig. 12 shows the results of 
these tests. 
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This test has been used to find out the maximum 
number of information updates, which can be handled by 
a single IS server depending on the number of concurrent 
information providers and receivers. 

CONCLUSION 
The control, monitoring and configuration facilities for 

the ATLAS DAQ system are implemented on top of the 
CORBA standard. CORBA is high-level object standard 
for distributed communication. CORBA supports most of 
the widely used programming and scripting languages. 
There is a number of free and commercial CORBA 
implementations in the market, which are able to 
interoperate with each other. The only drawback of 
CORBA is a complicated API, which implies a significant 
learning curve. In order to overcome this issue a software 
wrapper called IPC has been provided on top of CORBA. 
IPC dramatically simplifies the usage of CORBA in the 
scope of the ATLAS DAQ system. In addition IPC 
provides a very convenient way of implementing common 
generic facilities for the Online Software services.   

The IPC API hides the details of the CORBA 
communication layer from the software developer. This 
speeds up the software development process and results in 
the production of the highly effective and reliable 
software. Our experience shows that even a beginning 
software developer can easily learn the IPC API in several 
hours. 

Performance and scalability studies, which have been 
done on the cluster consisting of more then 300 
computers, reassure the choice of CORBA as 
communication technology for the ATLAS DAQ control, 
configuration and monitoring. They show that CORBA 
provides the necessary performance and scalability for the 
distributed ATLAS DAQ. 
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