
EXPERIENCE WITH CORBA COMMUNICATION MIDDLEWARE IN THE
ATLAS DAQ

S.Kolos*, University of California, Irvine, USA
D.Burckhart-Chromek, J.Flammer, M.Dobson, R.Jones, D.Liko, L.Mapelli, CERN, Geneva,

Switzerland
I.Alexandrov, V.Kotov, S.Korobov, M.Mineev , Joint Institute for Nuclear Research, Dubna, Russia
A.Amorim, N. Fiuza de Barros, D.Klose, L.Pedro, Universidade de Lisboa, Faculdade de Ciencias

(FCUL- CFNUL), Lisbon, Portugal
E.Badescu, M.Caprini, National Institute of Physics and Nuclear Engineering, Bucharest, Romania

A.Kazarov, Y.Ryabov, I.Soloviev, Petersburg Nuclear Physics Institute, Gatchina, Russia

* On leave from Petersburg Nuclear Physics Institute

Abstract
As modern High Energy Physics experiments require

more distributed computing power to fulfil their demands,
the need for efficient distributed online services for
control, configuration and monitoring in such experiments
becomes increasingly important.

This paper describes the experience of using standard
Common Object Request Broker Architecture (CORBA)
[1] middleware for providing a high performance and
scalable software, which will be used for the online
control, configuration and monitoring in the ATLAS [2]
Data Acquisition (DAQ) system. It also presents the
experience, which was gained from using several
CORBA implementations and replacing one CORBA
broker with another.

Finally the paper introduces results of the large scale
tests, which have been done on the cluster of more then
300 nodes, demonstrating the performance and scalability
of the ATLAS DAQ online services. These results show
that the CORBA standard is truly appropriate for the
highly efficient online distributed computing in the area
of modern HEP experiments.

INTRODUCTION
ATLAS is one of the four experiments in the Large

Hadron Collider (LHC) [3] accelerator at CERN. The
ATLAS detector consists of several sub-detectors, which
can be operated in parallel and fully independently from
each other.

The ATLAS Data Acquisition (DAQ) system transports
event data from the 1600 detector read-out links to mass
storage. In order to provide the required functionality and
to handle the physics data rate, the DAQ system will use
several hundreds processors connected altogether over a
high-speed network with each of them running several
DAQ software applications.

The Online Software project is part of the ATLAS
DAQ, which is responsible for the control, configuration
and monitoring of the ATLAS DAQ system. This is a
challenging project which has to meet a number of strong
requirements. The size and distributed nature of the

ATLAS DAQ implies that the Online Software has to be
scalable and high performance distributed software. The
long life time of the ATLAS experiment requires that this
software has to be easily extendable and maintainable. In
order to meet these requirements it has been decided to
use CORBA based communication middleware as a basis
for the DAQ Online Software implementation.

The Online Software provides a number of software
services, which are grouped into three categories:
configuration, control and monitoring services. The
services are clearly separated one from another and have
well defined boundaries. For each service there is a low-
level software component, which provides both the
service implementation and API.

Figure 1: Online Software architecture

The distributed facilities of the Online Software
services are implemented on top of the Inter Process
Communication (IPC) software package, which is a
wrapper above CORBA and the OMG Naming Service
[4] (see Fig. 1).

RATIONALE OF CORBA
CORBA is an open standard for distributed object

computing, which has been proposed in 1991 by the
Object Management Group (OMG) [5]. It standardises
many common network programming tasks such as object
registration, location and activation; parameter
marshalling and demarshalling; operation dispatching and
so on.

CORBA supports most of the widely used
programming languages, like for example C, C++, Java;

Inter Process Communication

CORBA

OMG Naming Service

Control
Services

Configuration
Services

Monitoring
Services

as well as a number of scripting languages like for
example Python. This gives to software developers a large
flexibility in choosing the most appropriate programming
language for the distributed systems implementations.

Different implementations of the CORBA standard are
able to communicate with each other. This
interoperability is one of the most important advantages
of CORBA. This feature provides another level of
flexibility by allowing using different CORBA brokers
for example in C++ and Java applications.

All CORBA compliant brokers are compatible at the
source code level. CORBA based user programs can be
compiled with almost no changes using different CORBA
brokers. This is very important in the context of the long
lifetime of the ATLAS experiment. Using CORBA one
relies to the widely used and mature standard, which
allows replacing one CORBA broker with another with
minimal changes to the software programs.

CORBA provides a high-level object-oriented
paradigm for the distributed programming hiding low
level aspects of the communication implementation.
However the API and communication model, which are
provided by CORBA, are considerably complex. This
complexity is a result of the flexibility, which CORBA
offers for the distributed application development.
However the drawback of this flexibility is a significant
learning curve for CORBA, which makes its use
unproductive in the international scientific communities,
in which people are changing each other very often. In
order to overcome this issue, a light-weight software
wrapper, called Inter Process Communication (IPC), has
been implemented on top of CORBA in the scope of the
ATLAS DAQ project. The IPC drastically simplifies the
distributed programming interface by narrowing the very
wide spectrum of features, provided by CORBA, to a
reasonably small subset of functions, which are used by
the ATLAS DAQ Online Software.

INTER PROCESS COMMUNICATION
PACKAGE

The IPC is a software package, which provides several
important functionalities to the other Online Software
services:

•a simple API for the core CORBA facilities
•a simple API for the OMG Naming Service
•transparent cache for the remote object references

Core CORBA functionalities
There are several actions, which have to be done by any

CORBA application: ORB initialisation, Root and
specific Portable Object Adapters (POAs) creation, POA
Manager creation, CORBA objects registration and
initialisation, etc. IPC completely hides all these actions
either by doing them implicitly (when it is appropriate) or
by providing very simple function calls for them. For
example the fragment of the C++ code, which is shown
on Fig. 2, does the ORB initialisation as well as the Root
POA and POA Manager objects creation. Parameters,

which are passed to the IPCCore::init function, are used
to transmit some ORB specific configuration attributes
from the application command line to the IPC run time.

Figure 2: IPC initialisation in C++

In order to develop a service using CORBA one has to
provide the service description using the OMG Interface
Definition Language (IDL) [6]. The IDL is a purely
declarative language with the syntax very similar to C++,
which makes it easy to learn and use. When the IDL
description for the service is ready one has to invoke an
appropriate IDL compiler, which translates the IDL
declaration to the necessary programming language
definitions in accordance with the OMG specification.
Then the service can be implemented in that
programming language. IPC respects this procedure and
any IPC based service has to have an interface declared in
IDL. Fig. 3 shows one of the real Online Software IDL
interfaces.

 Figure 3: Run Control IDL interface

This is the interface to the Run Control (RC) service
[7], which defines the rc::controller interface. This
interface has a single method called command, which is
used to send commands to any RC controller of the DAQ
system.

Fig. 4 shows the implementation of the Run Control
interface in C++. The POA_rc::controller class, which is
used as template parameter of the IPCNamedObject class,
is a class generated by the IDL to C++ compiler

application. It has the same name for any CORBA
compliant broker.

Figure 4: Run Control implementation in C++

IPC provides a very simple API for creating CORBA
objects and registering them with the appropriate POA.
This API completely hides the POA class and performs

module rc {
 interface controller : ipc::servant {
 void command(in string cmd);
 }
}

int main(int argc, char ** argv) {
 IPCCore::init(argc, argv);
 …
}

class RCController :
 public IPCNamedObject<POA_rc::controller>
{
 RCController(const IPCPartition & p,
 const std::string & name)
 :
IPCNamedObject<POA_rc::controller>(p,name)
 { publish(); }

 ~RCController() { withdraw(); }

 void command(const char * cmd) { … }
};

the necessary POA operations like POA creation, objects
registration, objects activation and so on implicitly.

IPC provides two base classes for CORBA object
implementations, which perform all the necessary POA
interactions. For example any instance of the class, which
inherits the IPCNamedObject (as in Fig. 4), can be
connected from any other IPC based application via the
name, which is provided at the object construction. Fig. 5
shows how an instance of the IPCNamedObject based
class can be created. After that any other application can
get a reference to the “MyCtrl” controller in the
“MyPartition” partition in order to invoke remote
methods of that controller.

Figure 5: IPC named object creation

IPC provides also another class called IPCObject,
which can be used as a base class for the anonymous
CORBA object implementations. An instance of a class,
which inherits the IPCObject, can be passed to another
program only explicitly, as parameters of another remote
operation. This facility is used for example to implement
the subscription/call-back pattern.

IPC Partition
A DAQ Partition represents a self contained instance of

the ATLAS DAQ system for the piece of the ATLAS
detector, which can perform data taking activity
independently and concurrently with the other detector
parts.

The IPCPartition class puts a notion of the DAQ
Partition into the programming language context. As one
can see from the example on Fig. 5 any named IPC object
may belong to one and only one IPC Partition. This
allows having several concurrent instances of the same
service for different DAQ Partitions. For example one can
unambiguously create two RC controllers with the same
name if they belong to different partitions. The
IPCPartition class provides an isolated communication
domain, which has no interference with any other IPC
Partitions.

The IPC Partition implementation is based on the OMG
Naming service, which provides a way of binding
CORBA object reference with a name. Any application
can interact with the Naming Service for getting a
reference to any registered object by providing the object
binding name. The IPCPartition class together with the
IPCNamedObject provides a simple wrapper for the
Naming Service API. The IPCNamedObject class has two
related server side methods: publish, which binds the
object to the name in the context of the specific partition;
and withdraw, which removes that binding. Fig. 4 shows
how these methods can be used in the constructor and
destructor of the distributed service implementation class.
Partition and the object name are provided as parameters
of the IPCNamedObject constructor (see Fig. 4).

The IPCPartition class provides the client counterpart
for the publish method, which is called lookup. Fig. 6
shows how to use this method for getting the remote
object reference and invoking operation on that object.

Figure 6: IPC named object creation

Note the use of the same partition and object names as
in the Fig. 5. The rc::controller and rc::controller_var
classes are generated by the IDL compiler. They have
exactly the same signatures for any CORBA compliant
broker.

Caching of remote object references
Establishing connection between client and server

processes is one of the most expensive operations in the
scope of remote communication. If a remote operation is
invoked relatively often, then it is much more efficient to
keep the connection open all the time. For this purpose
the IPC library implements a cache for remote object
references, which prevents connection from been closed
and re-established in between subsequent requests to the
same remote object.

In most cases this cache facility is completely
transparent for a user application, but there is one case, in
which user program assistance is required in order to
handle this situation properly. Such a situation occurs if
computer, on which one of the IPC based services is
running, had died and that service is restarted on another
machine. In this case the object reference, which is kept
in the client programs cache, becomes invalid. An attempt
to invoke any operation using this reference will result in
the IPCCacheExpired exception. User has to catch this
exception and call the IPCPartition::lookup function again
in order to refresh the remote object reference. Fig. 7
shows how this has to be done.

Figure 7: Handling the IPCCacheExpired exception

Other IPC facilities
IPC provides some other facilities, which simplify

distributed services development and maintenance. For
example it provides a common base interface for all the

IPCPartition p(“MyPartition”);
again:
 rc::controller_var rc =
 p.lookup<rc::controller>(“MyCtrl”);

 try {
 rc -> command(“MyCommand”);
 }
 catch(IPCCacheExpired &)
 {
 goto again;
 }

IPCPartition p(“MyPartition”);
RCController * rc;
rc = new RCController (p, “MyCtrl”);

IPCPartition p(“MyPartition”);
rc::controller_var rc =
 p.lookup<rc::controller>(“MyCtrl”);

rc -> command(“MyCommand”);

other services specific IDL interfaces. This interface is
called ipc::servant and must be inherited by any specific
IDL interface (see Fig. 3). The ipc::servant defines
several common operations for all the Online Software
services. For the moment this interface provides a way of
retrieving some general service parameters like the
service owner, starting time and host machine. If
necessary this interface can be transparently extended for
providing more information.

IPC is also used for implementing many useful features
transparently for the other Online Software services. For
example the Access Management service is currently
being implemented. It will provide any DAQ application
with some sort of authorisation token. The IPC can
transparently attach such a token to the context of a
remote method invocation on a client side. At the server
side the IPC can extract and verify this token (again
transparently for the server program) and pass it to the
Access Manager, which can make a decision of either to
allow or refuse the requested operation.

CORBA BROKERS
Initially the Online Software has been using the

implementation of CORBA, which is called Inter
Language Unification (ILU) [8] for C++ and the
JavaIDL† broker for Java. The results of using ILU have
been found quite satisfactory, but in the middle of 2002
Xerox company, which implemented ILU, has dropped
the ILU support. The ILU was not evolving any more and
therefore missed several useful features, which appeared
recently in the new versions of the CORBA standard. It
has been decided to evaluate several other CORBA
brokers in order to find a replacement for the ILU.

This evaluation has been reported in [9] and based on
it’s results, ILU has been replaced with another CORBA
broker, called omniORB [10]. We have found also some
drawbacks and problems for the JavaIDL broker and
replaced it with JacORB [11].

Replacing the Java broker required no modification to
the code of the Online Software services while transition
to the new C++ broker was not transparent. Normally
CORBA compliant C++ brokers differ only by the names
of the header and library files. However migration from
the ILU to the omniORB required more efforts because
the ILU is not fully CORBA compliant. In fact the need
of using a CORBA compliant broker was one of the
reasons for moving to the omniORB. Any possible future
transition to another CORBA compliant C++ broker will
be straightforward.

PERFORMANCE AND SCALABILITY
MEASUREMENTS

The unprecedented size of the ATLAS detector puts
very strong performance and scalability requirements to

† JavaIDL was a name of the CORBA broker integrated to
JDK. Now it has different name.

the control, configuration and monitoring services, which
are provided by the Online Software for the ATLAS DAQ
system. In addition those requirements are not the same
for different types of the services.

The Control services are dealing normally with short
network messages, which can be sent for example to the
Run Control controllers in order to change their states, or
to the Process Manager agents in order ask them to start
certain processes. Such operations are performed rarely
and the total amount of data, which is transferred over
network, is small. But the scalability aspect is very
important because normally these operations are applied
concurrently to a large number of the remote applications.

The situation is similar for the Configuration services,
which provide configuration data for a large number of
applications at the same time. The important difference is
that the size of the data transferred over network is
significantly larger than for the Control services.

The requirements for the Monitoring services differ
because monitoring is permanently in use during data
taking activity for transferring large amount of data
between different DAQ applications.

In order to study the performance of different services
as well as of the integrated DAQ infrastructure, a large
test bed has been set up. The test bed consisted of more
than 300 PCs, which were connected over 100 MB
Ethernet. A number of independent tests have been
performed for different services on that test bed. The next
sections present some results of these tests.

Control services
Starting with booted but idle machines, the tests for the

Control services simulate the start of data taking activities
by creating all the necessary processes in the defined
order and then cycling the system through the states
prescribed by the Run Control to simulate a data taking
activity. At the end of these cycles, the system is shut-
down in an orderly manner and all the DAQ related
processes are destroyed. Timing values were written to
file and subsequently loaded into a spreadsheet. These
tests have been done using a cluster of more than 300
computers. All the tests have been repeated a number of
times and plots show mean times for each operation.

0

0,5

1

1,5

52 154 256 358 460 562 664 766 868 970

Number of Controllers

se
co

nd
s

Figure 8: RC Start transition time

Fig. 8 shows the time for performing single Run
Control transition, which is called Start. This is a simplest

RC transition, which consists from two steps. At each step
all the controllers are synchronised, i.e. they all receive a
respective command, change their state according to them
and report a new state to their parents.

Controllers, which have been used for these tests were
a dummy ones, which did nothing during transition. The
time, which has been measured for that transition, is twice
of the time of distributing the RC commands to all the
controllers and receiving a confirmation from them for
the transition completion. More information about the
results of the scalability tests for the Online Software
Control services can be found in [7].

Configurations services
The Configurations service is used to keep the set of

parameters describing TDAQ and to provide access to it.
The database is read simultaneously by many DAQ
applications during the data taking session initialisation.
Each application may read a number of parameters from
the database. A total amount of data to be read may vary
from several bytes up to tens of Mbytes for different
applications. The total number of applications in the final
DAQ system will be at the order of several thousands. A
single server is not capable of implementing the required
database service for performance reasons and therefore it
will be necessary to run several instances of them. The
main goal of the configurations service tests was to find
out the required number of Configuration servers for the
final ATLAS DAQ system. There are several tests series,
which have been performed using 220 computers from
the test bed. All the tests have been repeated several times
and plots show mean time for these repetitions. Fig. 9
shows mean time for reading single simple object from
the database.

0,00

0,02

0,04

0,06

0,08

0,10

0,12

10 30 50 70 90 110 130 150 170 190 210
Number of clients

se
co

nd
s

Figure 9: Time for reading single object

Fig. 10 shows results of the other tests, which have
been performed to measure the time for reading
composite objects from the database (consists of 2042
small nested objects) and for reading large objects, which
have size of 1, 4, 8 and 16 MB.

0

10

20

30

40

50

60

10 30 50 70 90 110 130 150 170 190 210
Number of clients

se
co

nd
s

composite object
1 Mbytes array
4 Mbytes array
8 Mbytes array
16 Mbytes array

Figure 10: Time for reading composite and large objects

More information about the results of the scalability
tests for the Online Software Control services can be
fount in [12].

Monitoring services
The Information Service (IS) is one of the Monitoring

services provided by the Online Software. It is used to
share user defined information between DAQ
applications. It is responsible for serving a large number
of clients and sustaining a high rate of the monitoring data
exchange. Two different test series have been performed
for the IS. In both series Information Service has been
represented by a single application running on the
dedicated computer (dual PIV 2.2 GHz). All the clients
for that IS were equally distributed over another 220
computers.

The first test series has been used to measure the mean
time of a single information update operation for a single
IS server in case it is used concurrently by a large number
of information providers. In these tests every information
provider performed one information update every second.
Fig. 11 shows the results of these tests.

0

5

10

15

20

200 600 1000 1400 1800

Number of information providers

m
illi

se
co

nd
s

1 receiver

5 receivers

10 receivers

15 receivers

20 receivers

Figure 11: Mean information update time

In the second series of tests each information provider
made a fixed number of information updates sequentially
with no delay between them. Fig. 12 shows the results of
these tests.

0

2000

4000

6000

8000

10000

12000

14000

200 600 1000 1400 1800 2200 2600 3000
Number of information providers

R
eq

ue
st

s
pe

r s
ec

on
d

1 receiver

5 receivers

10 receivers

Figure 12: Number of requests per second, which can be
handled by a single IS server

This test has been used to find out the maximum
number of information updates, which can be handled by
a single IS server depending on the number of concurrent
information providers and receivers.

CONCLUSION
The control, monitoring and configuration facilities for

the ATLAS DAQ system are implemented on top of the
CORBA standard. CORBA is high-level object standard
for distributed communication. CORBA supports most of
the widely used programming and scripting languages.
There is a number of free and commercial CORBA
implementations in the market, which are able to
interoperate with each other. The only drawback of
CORBA is a complicated API, which implies a significant
learning curve. In order to overcome this issue a software
wrapper called IPC has been provided on top of CORBA.
IPC dramatically simplifies the usage of CORBA in the
scope of the ATLAS DAQ system. In addition IPC
provides a very convenient way of implementing common
generic facilities for the Online Software services.

The IPC API hides the details of the CORBA
communication layer from the software developer. This
speeds up the software development process and results in
the production of the highly effective and reliable
software. Our experience shows that even a beginning
software developer can easily learn the IPC API in several
hours.

Performance and scalability studies, which have been
done on the cluster consisting of more then 300
computers, reassure the choice of CORBA as
communication technology for the ATLAS DAQ control,
configuration and monitoring. They show that CORBA
provides the necessary performance and scalability for the
distributed ATLAS DAQ.

REFERENCES
[1] CORBA home, http://www.corba.org/
[2] ATLAS Technical Proposal, CERN/LHCC/94-43

ISBN 92-9083-067-0.
[3] Status of the LHC, R.Schmidt, CERN-LHC-Project

Report-569, 02 Jul 2002.
[4] OMG Naming Service formal specification,

http://www.omg.org/technology/documents/formal/n
aming_service.htm

[5] OMG Home page, http://www.omg.org/
[6] OMG IDL specification, http://www.omg.org/cgi-

bin/doc?formal/02-06-07
[7] D.Liko at. al., Control in the ATLAS TDAQ system,

this conference.
[8] ILU home page,
 ftp://ftp.parc.xerox.com/pub/ilu/ilu.html
[9] S.Kolos, Evaluation of CORBA implementations,

https://edms.cern.ch/cedar/plsql/doc.info?cookie=299
2923&document_id=403799&version=1.1

[10] omniORB home, http://omniorb.sourceforge.net/
[11] JacORB home, http://www.jacorb.org/
[12] I.Soloviev at. al., The configurations database

challenge in the ATLAS DAQ system, this
conference

