
Optimizing Selection Performance on Scientific Data
by utilizing Bitmap Indices

H. Schmücker, CERN, Geneva, Switzerland

Abstract

Bitmap indices have gained wide acceptance in data warehouse
applications handling large amounts of read only data. High di-
mensional ad hoc queries can be efficiently performed by utilizing
bitmap indices, especially if the queries cover only a subset of the
attributes stored in the database. Such access patterns are com-
mon use in HEP analysis. Bitmap indices have been implemented
by several commercial database management systems. However,
the provided query algorithms focus on typical business applica-
tions, which are based on discrete attributes with low cardinal-
ity. HEP data, which are mostly characterized by non discrete
attributes, cannot be queried efficiently by these implementations.

Support for selections on continuously distributed data can be
added to the bitmap index technique by extending it with an adap-
tive binning mechanism. Following this approach a prototype
has been implemented, which provides the infrastructure to per-
form index based selections on HEP analysis data stored in ROOT
trees/tuples. For the indices a range encoded design with multi-
ple components has been chosen. This design concept allows to
realize a very fine binning granularity, which is crucial to selec-
tion performance, with an index of reasonable size. Systematic
performance tests have shown that the query processing time and
the disk-I/O can be significantly reduced compared to a conven-
tional scan of the data. This especially applies to optimization
scenarios in HEP analysis, where selections are slightly varied
and performed repetitively on one and same data sample.

INTRODUCTION
Queries in physics analysis commonly exhibit the fol-

lowing characteristics: They are multi-dimensional and
in a lot of cases they cover only a relative small sub-
set of a much larger number of attributes stored in the
queried database. They are ad hoc, i.e. the attribute sub-
sets involved in the queries are not known a priori and
the attribute combinations might change frequently. Fur-
thermore, the queried quantities involve floating point at-
tributes with large cardinalities. Although there are a
number of indexing schemes designed to speed up multi-
dimensional queries, most selections in physics analysis
are evaluated by a sequential data scan without using an
index, because none of the currently available index im-
plementations meets all requirements of the above query
pattern. Most tree or hash based multi-dimensional index
schemes suffer from the ”curse of dimensionality”, i.e. ei-
ther the index size or the query processing time grows super
linearly with the number of indexed attributes. So these in-
dices can only be utilized for relatively small attribute sub-
sets that are known a priori, which is not always the case
in interactive analysis sessions. Bitmap indices are per-

fectly suited for high dimensional ad hoc queries, but cur-
rent implementations are space efficient only for attributes
with a low cardinality. For attributes with high cardinality
(C � 100), which are quite common in physics analysis,
their size is out of scale. Possible approaches to reduce the
index size are bitmap compression, binning and bitmap en-
coding. The technique presented in this paper uses a com-
bination of binning and bitmap encoding to realize a bitmap
index of reasonable size for attributes with high cardinality,
a range encoded bitmap index with multiple components
and binning.

BITMAP INDICES

The basic principle of a bitmap index is to store a bit
vector for each distinct value of either an attribute or an
expression involving several attributes. Each bit in these
bit vectors addresses a record of the primary data sample,
e.g a row in a table or a persistent object in a database.
The associated bit is set if and only if the record fulfills the
property in focus, e.g. the respective value of the record’s
attribute is equal to a certain value. The bit vectors mapped
to all possible values of a given attribute form a matrix —
the bitmap index. A major advantage of bitmap indices is
that multi-dimensional queries are performed by hardware
supported bit-wise logical combinations of the bit vectors.

A detailed discussion on the design of bitmap indices is
presented by Chan and Ioannidis [1, 2]. The most funda-
mental encoding scheme is equality encoding. Here the ith

bit in the bit vector associated with the value v is set if and
only if the indexed attribute is equal to v in the ith record.
An example is shown in table 1. This type of index is opti-
mal for exact match queries, since the result of an equality
check is given directly by the according bit vector. The
evaluation of range queries requires the scan of more bit
vectors. In the worst case half of the index has to be read.
The optimal solution for range queries are range encoded
indices. Here a bit is set if the attribute value is less or equal
the constant associated with the bit vector. But also exact
match queries can be efficiently performed using this index
type. The result is given by a logical XOR combination (⊕)
of two adjacent bit vectors. In the example of figure 1 the
query ”A = 5” is evaluated by R5 ⊕ R4.

The size of a equality encoded index matrix is given by
the product of the attribute’s cardinality C (number of bit
vectors (range encoding: C − 1)) and the number of in-
dexed records (length of the bit vectors). In case of non dis-
crete floating point attributes the cardinality is of the same
order of magnitude as the number of records. So the in-

Attribute Equality Encoding Range Encoding
Value E8 E7 E6 E5 E4 E3 E2 E1 E0 R7 R6 R5 R4 R3 R2 R1 R0

3 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0
2 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
5 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0

Figure 1: Example of an equality encoded and range encoded
bitmap index for a sample of discrete attributes with cardinality
C = 9, integers within the interval [0, 8].

Attribute Intervals represented by the bins
Values [0;120] [0;100] [0;80] [0;60] [0;40] [0;20]

R5 R4 R3 R2 R1 R0

34.7 1 1 1 1 1 0
94.0 1 1 0 0 0 0
64.9 1 1 1 0 0 0
15.5 1 1 1 1 1 1
61.7 1 1 1 0 0 0

137.2 0 0 0 0 0 0

Figure 2: Example of a range encode bitmap index for floating
point attributes in the interval [0;140] (equidistant binning). A bit
is set if the attribute value is less or equal the upper bin edge.

dex size S = C · N grows quadratically with the number
of records in the database. Bitmap compression can limit
this growth to a linear behavior. A detailed discussion on
bitmap compression is presented by Shoshani, Stockinger
and Wu [3, 5]. They show that in many cases an index size
of twice the raw data size is achieved and that an upper
bound of a factor of 6 is never exceeded. However com-
pression can be applied efficiently only to the sparse bit
vectors of an equality encoded index. The compressibil-
ity of range encoded bit vectors is much lower, especially
in the middle of the index matrix, where the bit density is
close to 50%.

Binning

The index size can be significantly reduced, when the at-
tribute values are partitioned into bins before the index is
created. In this case a bit vector does not represent a dis-
tinct attribute value but a range of attribute values. Hence
the selection result provided by the index is not exact and
has to be validated by a partial scan of the primary data.
Consider a selection ”A < 63.0” using the example of a
binned range encoded index shown in figure 2: The bit
vector R3, referred to as candidate vector, addresses all
records that fulfill the query and a few more that need to
be rejected. A XOR combination of R3 with R2 (referred
to as the hit vector) removes those records from R3 that
definitely matches the query. Only the remaining entries in
R3 needs to be validated by inspecting the primary data. In
case of a conjunction of queries the candidate and hit vec-
tors of each dimension are combined by logical AND op-
erations to a global candidate and hit vector. Then the hits
are removed from the global candidate vector via a XOR
combination with the global hit vector. The remaining can-
didates are checked separately for each dimension, first by

a validation via the according hit vector and then, if this
is unsuccessful, by inspecting the original data. A more
detailed discussion on evaluation strategies using binned
bitmap indices can be fount in [4].

The amount of primary data, that has to be scanned, de-
pends on the page size of the database, the query dimen-
sion, the selectivity and the binning granularity. For sparse
and high dimensional selections a sufficient reduction of
primary data, that need to be scanned, is achieved with a
relatively broad binning. If either the query dimension or
the selectivity is high, a very fine binning granularity, up
to 10000 bins, is required. A basic bitmap index address-
ing this large number of bins would be out of scale (10000
index bits per 32-bit attribute value). One solution of this
storage overhead problem is bitmap compression. Another
promising approach is the use of a multi component index.
In contrast to compression algorithms, which are only ef-
ficient for equality encoded indices, this bitmap encoding
technique significantly reduce the size of both, equality en-
coded and range encoded indices.

Multi Component Indices
The basic idea of multi component indices [1] is to de-

compose the attribute values into digits according to some
base and to create a basic bitmap index for each of these
digits separately. The result of this encoding is a very com-
pact index. E.g. a 3-component base–< 10, 10, 10 >

range encoded index, that addresses 1000 bins of a 32-
bit floating point attribute, is smaller than the original data
set: For each 32-bit attribute value 3 ∗ 9 + 2 = 29 in-
dex bits have to be stored (2 bits for over- and underflow
bins). On the other hand the selection process using a multi
component index is more complex compared to a basic
bitmap index. In principle the same selection algorithms
apply as for basic indices, but they have to be executed
on each index component separately. E.g., a range query
A ≤ 57 using a base–< 10, 10 > range encoded index
decomposes to A2A1 ≤ 510710 and can be rewritten as
(A2 ≤ 4) ∨ [(A2 ≤ 5) ∧ (A1 ≤ 7)]. In general, for a n-
component range encoded index with binning at most 2n

bit slices are involved in the query evaluation.

PERFORMANCE TESTS

Prototype
The prototype used for the performance tests has been

implemented based on the popular Root framework [6].
Data stored in Root-TTrees can be indexed using either
basic or multi component range encoded indices with
and w/o binning. The indices are stored in separate
TTrees and can be compressed using Root’s zip algo-
rithm. An adaptive binning method ensures that each
bit vector of a binned index addresses a similar num-
bers of data records. The algorithm includes a spike
search and for attributes with low cardinality it auto-
matically switches to a discrete mode without binning.
The indices can be created in user definable intervals for

Processing Time

TTreeFormula

Vertical Scan

Index, 100000 bins

Index, 1000 bins

Index, 10 bins

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110
 [

s]
re

al
t

1

2 dimensions

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

1

10

5 dimensions

Selectivity

-710 -610 -510 -410 -310 -210 -110
Selectivity

-710 -610 -510 -410 -310 -210 -110

 [
s]

re
al

t

1

10

10 dimensions

Figure 3: Response time for multi-dimensional queries against uniformly distributed random data

almost any expression accepted by TTreeFormula, e.g.
sqrt(tracks[].px**2+tracks[].py**2). Also the
query engine accepts TTreeFormula-like selection strings.
Queries can be composed using all C++ comparative and
logical operators. One limitation is of course that indexed
expression should be compared to constant values, in or-
der to utilize the according index. The query engine mini-
mizes the processing time of multi-dimensional selections
by rearranging them in that way, that sub queries with low
acceptance are evaluated first. Depending on the persistent
layout of the Root-TTree either a row-wise or column-wise
query evaluation strategy can be chosen.

Persistent data layout

The data organization strategy used by most DBMS
groups the attributes of each record, a row of a table or an
object, next to each other. While this row-wise layout, also
referred to as horizontal partitioning, is optimal for transac-
tional operations, it is inefficient for performing selections
that involve only a subset of the stored attributes, because
the values of a distinct attribute cannot be accessed exclu-
sively and therefore the full database has to be scanned.
An obvious alternative is to fill the database in a column-
wise way. In such a vertically partitioned database the val-
ues of each attribute are stored in consecutive disk pages
(or Root-TBaskets) and simple multi-dimensional queries,
can be performed efficiently by a column-wise scan. How-
ever, due to additional disk seeks, this does not apply, when
the query involves complex expressions that include more
than one attribute, e.g. sqrt(px**2+py**2). Further-
more in most cases column-wise writing of one single large
databases is not feasible, because the data is produced in a
row-wise manner. A compromise of these two approaches
is the strategy used for Root-TTrees written in split mode.
The TTree is filled record by record, but the attribute val-
ues are stored in separate TBaskets. As a result the values
of each attribute can be accessed exclusively, but the ac-
cording TBaskets are not organized consecutively on disk.
This fragmentation has indeed an impact on the data scan
efficiency.

Systematic Performance Tests

First the prototype has been systematically tested on uni-
form random data stored uncompressed in a vertically par-
titioned TTree with a TBasket-size of 16K. 4 million entries
with 100 32-bit floating point attributes have been written.
The resulting TTree-size is 1.5 GB. Selections on databases
of this dimension are common practice in physics anal-
ysis. The tested indices with 1, 3 and 5 components of
base 10 address 10, 1000 and 100000 bins respectively and
have a size of 11, 29 and 47 index bits per 32-bit attribute
value. The test have been performed on a 1.4 GHz P4 CPU
equipped with 256 MB RAM and a 40 GB IDE disk. The
mean index creation times per attribute are 3.7 s, 7.9 s and
15.0 s for the 10-, 1000- and 100000-bin indices. The test
queries are conjunctions of 2, 5 and 10 one sided range se-
lections: Ai ≤ xi && Aj ≤ xj By randomly varying
the query boundary x the selectivities have been adjusted
to values ranging from 10−7 to 0.5. The file cache has
been reset before each query. Figure 3 shows a compari-
son of the selection processing times of the three indices,
Root’s TTreeFormula query engine and a vertical data scan.
As expected the 10-bin index shows good results only for
very sparse and high dimensional queries. In all selection
scenarios the 100000-bin index outperforms TTreeFormula
and the vertical data scan. The achieved performance gains
ranges from 4 to 18 compared to TTreeFormula and from 2
to 4 compared to the vertical data scan.

An important use case in HEP analysis is the optimiza-
tion of selection cuts, which is characterized by repetitive
queries with slightly varied constraints on one and the same
subset of data attributes. The performance of bitmap in-
dices in such an optimization scenario has been investi-
gated using a flat TTree with 500000 rows of 10 uniform
random 32-bit floating point attributes. The TTree has a
size of 19 MB and fits completely into memory. The index
setup is the same as described in the previous section. The
selectivities of the test queries, conjunctions of one sided
range selections on all 10 attributes, ranges from 10−4 to
0.75. The results of this test are shown in figure 5. Since
both, the primary data tree and the index fits completely
into memory, the processing times are solely bound by the
processor speed. In all cases the index aided queries per-

Processing Time

TTreeFormula

Vertical Scan

Index, 10000 bins

Acceptance

-610 -510 -410 -310 -210 -110
Acceptance

-610 -510 -410 -310 -210 -110
 [

s]
re

al
t

10

210

row-wise

Acceptance

-610 -510 -410 -310 -210 -110
Acceptance

-610 -510 -410 -310 -210 -110

 [
s]

re
al

t

0

10

20

30

40

50

split mode

Acceptance

-610 -510 -410 -310 -210 -110
Acceptance

-610 -510 -410 -310 -210 -110

 [
s]

re
al

t

0

2

4

6

8

10

12

14

16

column-wise

Figure 4: Response time for 5-dimensional queries against event-tag data of different persistent layouts

Selectivity

-410 -310 -210 -110
Selectivity

-410 -310 -210 -110

 [
s]

re
al

t

10

210

Processing Time
TTreeFormula
Index, 100000 bins
Index, 1000 bins
Index, 10 bins

Figure 5: Processing times of repetitive queries on a TTree that
completely fits into memory.

form better than the conventional scan of the data. Espe-
cially queries with a selectivity greater than 10%, which
are most important in selection optimization scenarios, are
speed up by a factor up to 20 by using the indices.

Querying Physics Data
The prototype has also been tested on an extract of a

HEP event tag database, that is used in analysis for fast
pre selection based on event summary data. The data sam-
ple contains 7.6 million records with 40 4-byte integer and
63 4-byte floating point attributes. The data has been ex-
tracted to compressed TTrees of different persistent layouts
(row-wise, column-wise and split mode) with a TBasket-
size of 16KB. The resulting TTree-size is 1.5 GB (3.0 GB
uncompressed). For attributes with high cardinality a 4-
component index addressing 10000 bins has been created.
For attributes with a cardinality less than 10000 the pro-
totype has automatically set up a direct index of smaller
size without binning. The indices have been compressed.
The resulting size of the whole index is 2 GB (2.9 GB un-
compressed). The index creation took 35 minutes on a
2.4 GHz P4 CPU equipped with 768 MB RAM and a 40
GB IDE disk. The test queries consist of a conjunction of
one sided range queries on 5 randomly chosen attributes.
In figure 4 the average query processing times are plotted
against the selection acceptance. In case of the row-wise
TTree the index outperforms TTreeFormula, which evalu-
ates the query via a sequential data scan, by a factor greater

than 50. This result can be interpreted as rough estimate
of the performance gain that could be achieved with a re-
lational database. For the TTree written in split mode the
gain ranges from 8 to 16. Also in the case of the column-
wise TTree the index is always the fastest technique. It is
more than twice as fast than the vertical scan. An interest-
ing result is, that even TTreeFormula, which evaluates the
query in a row-wise manner, profits from the column-wise
persistent data layout. Compared to the results measured
with a split TTree it performs 4 times faster.

CONCLUSION
Motivated by the need to efficiently process multi-

dimensional ad hoc queries on non-discrete data attributes,
a prototype, that combines the concept of range encoded
multi component bitmap indices with an adaptive binning
algorithm, has been implemented. This approach allows
to realize efficient bitmap indices for high cardinality at-
tributes, that are not greater than 1.5 times the original data
size. Queries against large databases can be speed up by
factors ranging from 2 up to 50 depending on the persistent
layout of the primary database. Also the processing time
of repetitive selections on small data samples, which is a
common use case in HEP analysis, is significantly reduced
by factors up to 20.

REFERENCES
[1] C.Y. Chan and Y.E. Ioannidis, Bitmap Index Design and Eval-

uation, In Proceedings of SIGMOD 1998.

[2] C.Y. Chan and Y.E. Ioannidis, An efficient Bitmap Encoding
scheme for Selection Queries. In proceedings of SIGMOD
1999.

[3] K. Stockinger, K. Wu, A. Shoshani: Strategies for processing
ad hoc queries on large data warehouses. In Proceedings of
DOLAP 2002

[4] K. Stockinger, K. Wu, A. Shoshani, Evaluation Strategies for
Bitmap Indices with Binning, In Proceedings of DEXA 2004.

[5] K. Wu, E. Otoo, A. Shoshani, An Efficient Compression
Scheme For Bitmap Indices, Tech. Report LBNL-49626,
2004

[6] http://root.cern.ch

