
SOFTWARE AGENTS IN DATA AND WORKFLOW MANAGEMENT

T.A. Barrass (University of Bristol, UK)

 O. Maroney, S. Metson, D. Newbold (University of Bristol, UK)
W. Jank (CERN, Geneva, Switzerland)

P. Garcia-Abia, J. M. Hernández (CIEMAT, Spain)
A. Afaq, M. Ernst, I. Fisk, Y. Wu (FNAL, Chicago, USA)

C. Charlot, I. Semeniouk (IN2P3 LLR, France)
D. Bonacorsi, A. Fanfani, C. Grandi, N. DeFilippis (INFN CNAF, Bologna, Bari, Italy)

K. Rabbertz, J. Rehn (University of Karlsruhe, Germany)
L. Tuura (Northeastern University, USA)

T. Wildish (Princeton, USA)

Abstract
CMS currently uses a number of tools to transfer data
which, taken together, form the basis of a heterogeneous
datagrid. The range of tools used, and the directed, rather
than optimized nature of CMS recent large scale data
challenge required the creation of a simple infrastructure
that allowed a range of tools to operate in a
complementary way.

The system created comprises a hierarchy of simple
processes (named ‘agents’) that propagate files through a
number of transfer states. File locations and some
application metadata were stored in POOL file
catalogues, with LCG LRC or MySQL back-ends. Agents
were assigned limited responsibilities, and were restricted
to communicating state in a well-defined, indirect fashion
through a central transfer management database. In this
way, the task of distributing data was easily divided
between different groups for implementation.

The prototype system was developed rapidly, and
achieved the required sustained transfer rate of ~10
MBps, with O(106) files distributed to 6 sites from CERN.
Experience with the system during the data challenge
raised issues with underlying technology (MSS
write/read, stability of the LRC, maintenance of file
catalogues, synchronization of filespaces), all of which
have been successfully identified and handled. The
development of this prototype infrastructure allows us to
plan the evolution of backbone CMS data distribution
from a simple hierarchy to a more autonomous, scalable
model drawing on emerging agent and grid technology.

DATA DISTRIBUTION FOR CMS

The Compact Muon Solenoid (CMS) experiment at the

LHC will produce Petabytes of data a year [1]. This data
is then to be distributed to multiple sites which form a
hierarchical structure based on available resources: the
detector is associated with a Tier 0 site; Tier 1 sites are
typically large national computing centres; and Tier 2
sites are Institutes with a more restricted availability of
resources and/or services. A core set of Tier 1 sites with

large tape, disk and network resources will receive raw
and reconstructed data to safeguard against data loss at
CERN. Smaller sites, associated with certain analysis
groups or Universities, will also subscribe to certain parts
of the data. Sites at all levels will be involved in
producing Monte Carlo data for comparison with detector
data.

At the Tier 0 the raw experiment data undergoes a
process called reconstruction in which it is restructured to
represent physics objects. This data will be grouped
hierarchically by stream and dataset based on physics
content, then further subdivided by finer granularity
metadata.

There are therefore three main use cases for distribution
in CMS. The first can be described as a push with high
priority, in which raw data is replicated to tape at Tier 1s.
The second is a subscription pull, where a site subscribes
to all data in a given set and data is transferred as it is
produced. This use case corresponds to a site registering
an interest in the data produced by an ongoing Monte
Carlo simulation. The third is a random pull, where a site
or individual physicist just wishes to replicate an extant
dataset in a one-off transfer.

Although these use cases are here discussed in terms of
push and pull these can be slightly misleading
descriptions. The key point is the effective handover of
responsibility for replication between distribution
components; for example, it is necessary to determine
whether a replica has been created safely in a Tier 1 tape
store before being able to delete it from a buffer at the
source. This handover is enabled with well-defined
handshakes or exchanges of state messages between
distribution components.

The conceptual basis of data distribution for CMS is
then distribution through a hierarchy of sites, with smaller
sites associating themselves to larger by subscribing to
some subset of the data stored at the larger site.

The management of this data poses two overall
problems. The first problem is that sustained transfers at
the 100+ MBps estimated for CMS alone are currently
only approached by existing experiments. The second
problem is one of managing the logisitics of subscription
transfer based on metadata at granularities between high

level stream location and low level bulk staging requests
across multiple mass storage platforms.

Managing large data flows

The grid tools currently in use by CMS do not scale to

the management of data-flows of this size. At present
point-to-point transfers require significant manual
triggering, intervention and failure recovery. Managing
the transfer of many millions of files from and to multiple
sites is currently close to impossible without significant
manpower cost. It is a solution to the second of these
problems that we discuss here.

A scalable architecture

A combined blackboard and multi-agent architecture

[2] allows CMS to automate a succession of point-to-
point transfers throughout its distribution network. CMS’
agents are focused, persistent processes like daemons.
Although algorithmically they are quite sophisticated,
incorporating robust backoff, failover and recovery
mechanisms, they are all intended to handle only specific
tasks, for example copying a file from A to B or
allocating new files to a set of subscribed destinations
(see Fig. 1.).

At present these agents do not operate within an
advanced agent framework like Diamonds [3], for
example, although they draw heavily on such systems.
Instead, agents are typically coded in Perl, which allows
rapid prototyping of system logic and workflow testing.
Note that the use of a sophisticated agent framework is
seen as a reasonable future step.

Central
Blackboard

Transfer
Agent

Migrate
Agent

Transfer
Agent

Stage
Agent

Allocator

Focused, distributed
persistent processes,
like daemonsÉ

Records system, replica
stateÉ

Minimal information
passingÉ

Fig. 1. CMS distribution relies on a scalable architecture
of distributed processes communicating through a shared
blackboard.

There is no intra-agent communication. Instead, all
agents post information to a central blackboard service,
which acts as a message board containing global system
state. Traditional AI blackboard systems include control
structures that trigger certain external component
behaviours. In CMS’ case there is no such control
structure- instead, each agent is autonomous and has the
responsibility of reading and posting relevant information
entirely asynchronously. Agent functionality can be

defined solely in terms of messages passed to and read
from the blackboard, allowing multiple developers to
produce prototypes, in parallel if necessary to manage
site-specific issues. We have found that this is not a waste
of resources as agent code is typically only several
hundred lines of script.

Grid context

The CMS distribution architecture complements current

grid tools, forming a layer at which large scale data-flows
can be managed. It separates high-level replica
management components from low-level replication
tools. It gives the replica managers a more abstract
interface to the experiment’s dataset, allowing them to
manage transfers of data at any granularity. It also
handles issues of staging and space reservation that are
closely coupled to the underlying replication tools.

This approach is in contrast to some existing grid tools,
for example the LCG-2 replica manager tools [4], where
an overall replica management component couples point-
to-point transfer to catalogue operations without any
sense of data clustering.

DATA DISTRIBUTION DURING A

RECENT DATA CHALLENGE

In the first quarter of 2004 CMS undertook a large-scale
data challenge with the aim of simulating the production
and distribution of reconstructed data at 25% of the full
start-up rate, or 25 events per second [5].

An Oracle database located at CERN and named the
Transfer Management Database (TMDB) was used as the
central blackboard. The operation of a number of agents
was defined in advance as simple SQL interactions with
the blackboard, with the aggregate of these operations
forming the distribution workflow. The agents were then
implemented in a variety of languages, including Bash
script, Perl, C and Java, determined by local experience.
In this way very lightweight but effective prototypes were
rapidly built and customised for site-specific operations.

A distribution chain with a star shaped topology was
used to propagate replicas to 6 Tier 1s and multiple
associated Tier 2s in the USA, France, UK, Germany,
Spain and Italy. Three different transfer tools were used:
SRB [6], SRM [7] and the LCG-2 Replica Manager [4].
The data challenge is discussed in detail by Bonacorsi et
al [8], and Fanfani et al [9].

A series of “export buffers” at CERN were used as
staging posts to inject data into the domain of each
transfer tool. Tier 1 sites then replicated files, migrated
them to tape and made them available to associated Tier
2s.

Distribution workflow

Distribution for CMS consists of a series of handshakes

by distribution components. During each handshake each
component completes a task and notifies the next
component in distribution of the chain (see Fig. 2).

During DC04, distribution of a given file was initiated
when a reconstruction task dropped summary information
into a dropbox managed by the first in a chain of agents.
The summary information comprised a small XML
catalogue fragment containing local PFNs, and file
attributes like checksum and filesize information.

The injection agents then issued a stage request for the
file and published information to a global LCG-2 LRC
and RMC [7], and to the TMDB.

A global allocator agent noticed that new files had been
made available, and allocated those files to destination
sites based on predefined mappings. The allocations took
the form of an advert for the destination site, indicating
the file state as “available”.

Buffer

Source buffer

Transfer
Management

DB

3. Transfer agent: get
details of new files
available to me

Transfer
Agent

New
replica

5. Copy file
to ŅmyÓ buffer

Buffer
Cleaning

Agent

7. Clean files
if no one
needs them.

6. Update state
of file

LRC/RMC

4. Lookup filename

Stager

LRC/RMC
TMDB

Publishers

Replica
Metadata

update

Allocator

2. Find new
file, advertise
for transfer

1. Inject
data into
distribution.

Fig. 2. A distribution chain is built from the action of a
series of agents that transfer responsibility for sections of
a given transfer by handshaking.

Agents at each of the export buffers were aware of
which Tier 1 sites were associated with them. They
scanned the TMDB, looking for files advertised as
available for “their” Tier 1s. On finding files they
initiated a transfer from stage disk at CERN to their local
buffer. They then updated the state of the file, indicating a
successful transfer to the export buffer, thus effectively
advertising it to agents running at the Tier 1 sites.

The Tier 1 transfer agents initiated transfers of
available files from an export buffer, and then updated the
file state in the TMDB advert to indicate their presence at
the Tier 1. Migration agents at the Tier 1 then handled the
migration of the files to tape before updating the file state
to “safe”.

The final update to a “safe” state was a critical step for
the system. It enabled the system manager to see how
many files had been successfully “pushed” to tape at the
Tier 1, and also enabled the cleaning of unnecessary
replicas further up the chain, meaning that export buffers
could be purged.

In some cases further transfers to associated Tier 2 sites
were also facilitated with a similar chain of agents and a
local, independent TMDB.

Experience gained during DC04

During DC04 ~0.5 million files were generated. Each

file was tagged with 9 items of replica metadata and was
typically replicated between 5 and 10 times. The final
number of replicas in the LRC at the end of DC04 was
~3.5 million, ~6 TB of data.

It was found that the information posted in the TMDB
was sufficient to trigger automatic analysis of data on
local Grid resources on arrival. The PIC Tier 1 was able
to have the results of a simple analysis available after a
median period of only 20 minutes after the source data
was made available for distribution.

There were two key problems experienced during
DC04: overload of the central tape stager at CERN and
access to single-point file catalogues. In both cases
problems were compounded by the fact that the
reconstruction farm produced very small files: 0.5 MB in
size on average.

Catalogue access during DC04 meant access to a global
single instance of an EDG LRC and RMC coupled to
form an LCG POOL catalogue, and a single instance of
an SRB V2 MCat. The performance of both catalogues
was unsatisfactory. In the first case the catalogue stopped
responding as requests ramped up, reaching ~100,000
queries a day to the LRC, and 3 times that to the RMC
[9,10]. Catalogue query performance was also poor: a
query for a PFN based on guid metadata typically took
several seconds. In contrast it was possible to dump the
entire catalogue from the Oracle backend directly to a file
in ~ 2 minutes. The LRC/RMC problems stemmed from
deployment issues, principally the implementation as a
Java webservice and the necessity of joining across two
separate databases. During DC04 the backend database
was indexed and CMS worked closely with the EDG to
develop a more performant catalogue, although the
development was only complete as DC04 finished.

Access to the SRB MCat was also problematic:
although the backend database was available, some
unresolved problem related to local configuration, thought
to be causing a fragmentation of memory under high
loads, meant that connectivity between the database and
clients was low. As a result the majority of SRB transfers
under high load timed out.

Tape staging problems with Castor [11] at CERN
stemmed from Castor’s current lack of internal throttling
mechanism. The large number of unmanaged requests
made of the stager decreased stager performance
dramatically, so that transfers typically timed out. In
addition CMS experienced many stage misses due to
downtime of other components: although a single file
transfer chain could be complete in seconds, problems
with either catalogues, disk servers or software meant that
there could be a latency of days between files becoming
available and the first transfer. In this case the files were
migrated before they could be transferred. CMS
developed a sophisticated pinning mechanism that
allowed the prioritisation of file migrations based on
experiment policy.

PHEDEX

PhEDEx [12] (for Physics Experiment Data Export) is a

project born of CMS’ experience during DC04. It retains
the same architecture, relying on a central blackboard to
enable the exchange of information between a series of
distributed agents. The principal current aim of PhEDEx
is to incorporate the second CMS distribution use case,
that of subscription pull of Monte Carlo data.

Subscription pull of Monte Carlo for CMS requires that
many more sources of data must be accommodated within
the system. To enable the addition of multiple data
sources we borrow from established internet technology:
where routes from single source to multiple destinations
were hard coded into agents before, in PhEDEx nodes in
the distribution chain act as routers which share route
information using an implementation of the RIP2 [13]
algorithm. Any node in the network can act as a source of
data, and a route from any node to any other node in the
chain can be determined.

More sophisticated resource management

Agent handshaking has become more sophisticated in

light of experience during DC04. Staging is no longer part
of the data injection process. Instead dedicated agents
manage stage and migration at each distribution node.
The PhEDEx transfer workflow is then slightly modified
from DC04 distribution:

In addition to a single allocator agent PhEDEx has a
single file routing agent, whose task is to manage the
propagation of files from source to destination. It
continually scans currently allocated guid-destination
pairs. For each pair it determines the closest replica to the
destination. It then posts a pending transfer between the
closest-replica node and the next hop node toward the
destination.

A transfer agent at the next hop node manages a pool of
pending transfers. Each guid in this pool is marked
wanted by posting information in the TMDB. The
transition to a wanted state indirectly triggers a stage
request at the source node, managed by a migration agent.
When the file is staged the migration agent marks the file
as available in the TMDB, and the transfer agent
completes the transfer.

By making the handshake between agents more
sophisticated we are able to more effectively manage the
disparate resources available at CMS Tier 1 sites.

Current work

The PhEDEx project is currently deploying software to

manage transfers between CERN and Tier 1 sites in

Spain, Italy, the USA, Germany, France, Taiwan and the
UK. In addition a number of Tier 2 sites are also being
added, each associated with a Tier 1. Its current task is to
help supply 10 M Monte Carlo events per month to
physicists around the world in preparation for the CMS
Physics TDR in 2005.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the experience and

support of the CERN IT Database group in refining the
TMDB structure and collaborating to improve the
behaviour of replica management components.

REFERENCES

[1] The CMS Technical Proposal,
http://cmsinfo.cern.ch/TP/TP.html

[2] D. Corkhill, “Collaborating Software: Blackboard and
Multiagent systems & the future” Proceedings of the
International Lisp Conference, October 2003
[3] M. Aamir Shafi, M. Riaz, S. Kiani, A. Shehzad, U.
Farooq, A. Ali, I. C. LeGrand, H. B. Newman,
“Diamonds- Distributed Agents for Mobile and Dynamic
Services”, CHEP’03, La Jolla, California, USA March
2003
[4] The LHC Computing Grid,

 http://lcg.web.cern.ch/lcg/
[5] C. Grandi, on behalf of the CMS Data Challenge
group, “CMS Data Challenge 2004”, CMS NOTE, in
preparation
[6] A. Rajasekar, et al, “Storage Resource Broker -
Managing Distributed Data in a Grid”, Computer Society
of India Journal, Special Issue on SAN, Vol. 33, No. 4,
pp. 42-54 Oct 2003.
[7] The Storage Resource Management Working Group,
 http://sdm.lbl.gov/srm-wg/
[8] D. Bonacorsi et al, “Role of Tier-0, Tier-1 and Tier-2
Regional Centers during CMS DC04”, CHEP’04,
Interlaken, Switzerland, September 2004
[9] A. Fanfani et al, “Distributed Computing Grid
Experiences in CMS DC04”, CHEP’04, Interlaken,
Switzerland, September 2004
[10] M. Girone et al, “Experience with POOL from the
First Three Data Challenges using the LCG”
[11] Castor Mass Storage,
 http://www.cern.ch/castor
[12] CMS PhEDEx,
 http://www.cern.ch/cms-project-phedex
[13] G. Malkin, Bay Networks, “The Routing Internet
Protocol version 2”, Internet RFC2453

