
USING TRIPWIRE TO CHECK CLUSTER SYSTEM INTEGRITY

E. Ṕerez Calle∗, M. Cárdenas Montes† , F. J. Rodŕıguez Calonge‡ , CIEMAT, Madrid, Spain

Abstract

Expansion of large computing fabrics/clusters through-
out the world requires a stricter security to avoid system
damages such as data loss, data falsification or misuse.

Perimeter security and intrusion detection system (IDS)
are the two main aspects that must be taken into account in
order to achieve system security.

The main task of an intrusion detection system is early
detection in the previously mentioned cases, as a way to
minimize any damage in data held in the system.

Tripwire is one of the most powerful IDSs and is widely
used as a security tool by the community of network ad-
ministrators. Tripwire is oriented to monitor the status of
files and directories, being able to detect the lightest change
suffered by them.

At CIEMAT, Tripwire has been used to monitor our local
clusters, involved in GRID projects such as implementation
of LCG prototypes, to guarantee the integrability of data
generated, and stored there. It is used as well to monitor
any modificacion of operating system files and any other
scientific core software.

INTRODUCTION

Security needs for large clusters may be divided into two
broad areas:

• Security systems aimed at avoiding unauthorized ac-
cess to a network (perimeter security).

• Security systems whose target is the detection of
unauthorized accesses (intrusion detection systems).

Tripwire [1] is a free software tool included in the sec-
ond group. It monitors computers’ filesystems to discover
any modification of the stored directories and files, detect-
ing any unauthorized access as soon as possible. In short,
Tripwire’s goal is information integrity checking.

GOAL: INTEGRITY OF INFORMATION

A lot of sotfware has been developed to achieve this goal.
The aim of this software is to check the integrity of any
other software installed on a computer system. The reason
to do it is very simple: An attack may be discovered be-
cause of modificactions caused to the system. Those mod-
ifications are mainly:

∗elio.perez@ciemat.es
† miguel.cardenas@ciemat.es
‡ calonge@ciemat.es

System logs: Any access to the system is registered in
system logs. System logs monotoring can discover the
presence of an intruder, because he would try to hide
any entry showing his accesses to the system.

Operating system binaries: If an attacker gains access
to the system, he will probably try to hide his presence
using Trojan horses. Trojans are software that replace
operating system binaries to hide the attacker’s pro-
cesses or files.

Stored information: Misuse of any information stored
on the system may cause its alteration, e.g. scientific
software.

In short, if a computer program is able to detect any of
this modifications, it would be very useful to detect unau-
thorized accesses. A typical program of this kind of soft-
ware would work this way:

1. A snapshot of the system is taken before connecting
the system to the network. This snapshot is a report
about the situacion and characteristics of any file that
should be protected.

2. This information may be stored in a safe place, so
it cannot be modified (such as a write protected dis-
quette, CD-ROM...) or in a crypted database.

3. System checks are perfomed regularly, and reports are
compared with the reference one to detect any modi-
fications.

Following this steps, system integrity checking becomes
easier. Any alteration of stored files would make a dif-
ference with the snapshot previously taken. Systematic
checks would allow to discover any modification to act as
soon as posible.

There are a few integrity checkers in the market.Trip-
wire has been chosen because it is the most powerful and
versatile and thede factostandard nowadays.

WORKING WITH TRIPWIRE

On Unix systems, Tripwire is able to detect changes af-
fecting the following properties:

• File additions, deletes and modifications.

• File permissions and properties.

• Inode number and number of links.

• Inode generation number.

• Access Control Lists (ACLs).

• User id of owner and group id of owner.

• File type and size.

• Device number of the disk on which the inode associ-
ated with the file is stored.

• Device number of the device to which the inode
points.

• Number of blocks allocated to a file.

• Modification timestamp.

• Inode creation and modificacion timestamp.

• Growing or shrinking files –indicates that the file es
expected to grow or shrink.

• Flags.

• Access timestamp.

• Hash checking.

One of the most important characteristics of Tripwire is
the use of cryptography. Tripwire protects important stored
information by crypting it. It uses two keys:Site Key, to
crypt configuration files, andLocal Key, to crypt informa-
tion about the status of monitored files. Crypted files can-
not be modified without knowing these keys, so cryptogra-
phy is essential to assure system security.

Tripwire is a compound of:

- Policy and configuration files that describe Tripwire’s
behaviour.

- A database that stores information about the system.

- Reports generated by comparing the original database
with the present status of a system.

Policy and Configuration files

Tripwire’s configuration file provides general informa-
tion about the program, such as location of files needed for
normal execution (binaries, keys, databases and reports).
Some options about how the reports are generated and how
using the mail service may be configured here.

The policy file rules Tripwire behaviour. Files that
should be monitored are defined here, as well as how this
monitorization will be. This file has to be adapted to system
configuration so that any unauthorized modification could
be detected with enough time.

A free shell script has been developed by Diego
Bravo [3] to check policy file syntax. This script adapts
a given policy file, deleting any reference to files that do
not exist on the system.

(
ru lename = ” Kerne l A d m i n i s t r a t i o n ” ,
s e v e r i t y = $ (SIGHI) ,
ema i l t o = roo t@loca lhos t
)
{
/ s b i n / c t r l a l t d e l −> $ (SEC CRIT) ;
/ s b i n / depmod −> $ (SEC CRIT) ;
/ s b i n / insmod −> $ (SEC CRIT) ;
/ s b i n / k logd −> $ (SEC CRIT) ;
/ s b i n / l d c o n f i g −> $ (SEC CRIT) ;
/ s b i n / m in i l ogd −> $ (SEC CRIT) ;
/ s b i n / modinfo −> $ (SEC CRIT) ;
/ s b i n / p i v o t r o o t −> $ (SEC CRIT) ;
/ s b i n / s y s c t l −> $ (SEC CRIT) ;
}

Listing 1: Policy global variables

Any system stores different kind of files who need differ-
ent levels of protection. Some types of files are defined de-
pending on which properties are monitored. At CIEMAT,
files to be checked have been divided into these categories
using the following policy:

SEC CRIT: Files that cannot change. These are system
critical files and any modification could mean the ad-
ministrator has lost control of the system against an
attacker.

(
ru lename = ” C r i t i c a l boo t f i l e s ” ,
s e v e r i t y = $ (SIGHI)

)
{

/ boo t −> $ (SEC CRIT) ;
/ l i b / modules −> $ (SEC CRIT) ;

}

Listing 2: Critical files

SEC SUID: Files with the SUID o SGID bits. These files
can be executed by normal user with root privileges.
Any file with this property enabled, that has not been
installed by the system administration, indicates an
unauthorized access.

SEC BIN: Operating system binary files that should not
change.

(
ru lename = ” T r i p w i r e B i n a r i e s ” ,
s e v e r i t y = $ (SIGHI)

)
{

$ (TWBIN) / s i g g e n −> $ (SEC BIN) ;
$ (TWBIN) / t r i p w i r e −> $ (SEC BIN) ;
$ (TWBIN) / twadmin −> $ (SEC BIN) ;
$ (TWBIN) / t w p r i n t −> $ (SEC BIN) ;

}

Listing 3: Binary files

SEC CONFIG: Configuration files belonging to the in-
stalled applications. They are seldom changed, but
they are often accessed and read by those applications.

(
ru lename = ” S e c u r i t y C o n t r o l ” ,
s e v e r i t y = $ (SIG MED)

)
{

/ e t c / passwd −> $ (SEC CONFIG) ;
/ e t c / shadow −> $ (SEC CONFIG) ;

}

Listing 4: Configuration files

SEC LOG: System logs that store information about any
event happened in the system. They grow and become
bigger as new information is added.

SEC INVARIANT: Directories whose access permis-
sions and owner should not change.

{
/ −> $ (SEC INVARIANT) ;
/ home −> $ (SEC INVARIANT) ;
/ tmp −> $ (SEC INVARIANT) ;
/ u s r −> $ (SEC INVARIANT) ;
/ va r −> $ (SEC INVARIANT) ;
/ va r / tmp −> $ (SEC INVARIANT) ;

}

Listing 5: Invariant directories

In addition to different types of files, three degrees of
severity are defined, depending on how a modification
would affect system security.

SIG LOW: Files whose modification would have a low
impact on system securtiy.

SIG MED: Files whose modification would have a bigger
impact on system security.

SIG HI: Critical files whose modification involves a sys-
tem vulnerability.

Any monitored file would be listed on policy file, fol-
lowed by the kind of protection and the degree of severity
(impact on security).

Tripwire’s Database

Once the policy file has been configured and adapted to
the system, the Tripwire’s database has to be built. Tripwire
looks the policy file and analizes every listed file, checking
their existence. Its database will be built using this infor-
mation, it will be crypted and stored. The database will
work as a reference to discover any modifications in the
future.

Using this original database, Tripwire will check in
each execution if the system has been modified compar-
ing present situation with the previous one. Tripwire will

generate a detailed report covering any change discovered,
as well as the impact those changes would have on system
security.

The database is one of the key elements in Tripwire sys-
tem, therefore is crypted with the local key before being
stored. If the database was not protected with cryptog-
raphy, Tripwire’s capacity of detecting any moficication
would be seriously damaged, so the computer would be de-
fenceless against an attack.

Tripwire’s Reports

Reports are the result of Tripwire’s execution. They
show the differences found between the original stored
database and the present system status. Reports show a
general summary where information is divided into several
categories, depending on the degree of severity of the vio-
lations found.

After the summary, a detailed list of modifications is
shown, including added, deleted and modified files. For
each file that has been changed, the report shows previous
and present status, displaying information such as inode
numbers, size, modifty times and checksums.

Reports provide complete information about the system
and can be used in forensics analysis.

LARGE-SCALE EXECUTION

Automation and Change notification

Integrity checks are performed automatically at
CIEMAT to reduce administration tasks. This can be
done adding Tripwire to system’s cron. Tripwires allows
notifying the administrator any change detected using
email.

General information about the mail service (protocol and
port used) is specified in the configuration file. Specific
information, such as the receiver of sent mail, has to be
stipulated in the policy file, as it is shown below.

(
ru lename = ” Kerne l A d m i n i s t r a t i o n ” ,
s e v e r i t y = $ (SIGHI) ,
ema i l t o = roo t@loca lhos t
)
{
/ s b i n / c t r l a l t d e l −> $ (SEC CRIT) ;
/ s b i n / depmod −> $ (SEC CRIT) ;
/ s b i n / insmod −> $ (SEC CRIT) ;
/ s b i n / k logd −> $ (SEC CRIT) ;
/ s b i n / l d c o n f i g −> $ (SEC CRIT) ;
/ s b i n / m in i l ogd −> $ (SEC CRIT) ;
/ s b i n / modinfo −> $ (SEC CRIT) ;
/ s b i n / p i v o t r o o t −> $ (SEC CRIT) ;
/ s b i n / s y s c t l −> $ (SEC CRIT) ;
}

Listing 6: Chage notification by email

The policy file allows the administrator to specify which
notifications should be sent by mail, indicating the mail ad-

dress of the receiver (e.g. email notifications can be re-
stricted to modifications affecting critical files).

Centralization

Tripwire can be used more effectively if its execution is
centralized. This can be done defining a shell script in a
central computer. This scripts run routinely and use Se-
cure Shell (SSH) to throw parallel executions of Tripwire
on those systems that should be monitored. After all execu-
tions have concluded, the script picks up all the generated
reports. A whole network can be monitored from a central
computer working this way.

Centralized execution using SSH has been tested at
CIEMAT, but our approach to this goal implies mainly the
use of Simple Network Management Protocol (SNMP). A
declaration of state may be inserted in the local MIB tree
after Tripwire’s execution. Then, a client can pick up all
this information from the server nodes in the cluster using
SNMP commandsnmpget. This task may be easier as pro-
gramming a shell script as the communication protocol is
already implemented.

SNMP requires the installation of a daemon in the clus-
ter, to fill the MIB tree with information about monitored
properties, and a client, to get this information, in a central
computer. At CIEMAT, about 35 computers are currently
monitored in our local clusters from an unique machine.
The system load has been monitored in this machine, and
results are relatively low, since Tripwire centralized execu-
tion needs very little time of CPU.

About 45 machines are being monitored in other collab-
orating institutes, such as UAM and UB in a very similar
way, following the protoype implemented at CIEMAT.

User Interface

Centralized execution would be easier to do if Tripwire
had an user interface, but there is none licensed under
GPL [4] at the moment.

Anyway there are several options to use an interface,
such as integrate Tripwire in a Monitoring System. At
CIEMAT, and in other institutes, we have chosen Na-
gios [5], a security toolkit widely used for monitoring, as
an user interface for Tripwire.

Nagios allows the execution of remote security checks
through SSH or SNMP (usingcheck snmpparameter) and
has been used [6] to provide a graphical interface show-
ing the results of the checks performed, making easier the
monitoring of large clusters.

ALTERNATIVES TO TRIPWIRE

A well known alternative to Tripwire is AIDE [7], which
is licensed under GPL.

AIDE is also an integrity checker that looks for differ-
ences between a filesystem and a previously built database,
but it does not use cryptography to protect it. In fact, AIDE
does not use a database stored on the monitored computer.

It works comparing local files to reliable ones stored on
a different filesystem. Reliable files have to be written
on a local CD-ROM for each monitored computer or be
mounted remotely. That is an additional difficulty.

Tripwire’s database may also be stored in a non writable
filesystem, such as write protected disquette or a CD reader.
But as the database is crypted, an attacker will not be able to
modify it to hide any changes done to the system as a con-
sequence of his attack, and any unauthorized access will be
detected. Tripwire does not need to involve external facili-
ties to guarantee its security, and this is an advantage over
AIDE.

CONCLUSIONS

Security checks are essential in any computing facility.
Tripwire is a very comprehensive tool that allows to mon-
itor each computer in a network defining in a very precise
way the policy to follow.

The possibility of a large-scale centralized execution of
Tripwire and the possibility of adapting it to the needs of
a given cluster, simplifies management without limiting fa-
cilities and makes possible the monitorig of large and com-
plex cluster systems such as LCG. [8]

Finally, the inclusion of Tripwire in the Nagios moni-
toring toolkit provides a very versatile and secure environ-
ment for integrity checking that has been largely tested at
CIEMAT, and other collaborating institutes.

ACKNOWLEDGEMENTS

Authors wish to thank Dr. José M. Herńandez for useful
comments.

REFERENCES

[1] Tripwire project.
http://www.tripwire.org

[2] Tripwire commercial page.
http://www.tripwire.com

[3] D. Bravo Estrada, “Gúıa breve de Tripwire”.
http://es.tldp.org/Tutoriales/GUIATRIPWIRE

[4] General Public License (GPL).
http://www.gnu.org/copyleft/gpl.html

[5] Nagios monitoring tool.
http://www.nagios.org/

[6] M. Cárdenas Montes, E. Pérez Calle, F.J. Rodrı́guez Calonge,
“Using Nagios for intrusion detection”, CHEP’04, Interlaken,
September 2004.

[7] AIDE project.
http://sourceforge.net/projects/aide

[8] LHC Computing Grid project (LCG).
http://lcg.web.cern.ch/LCG/

