
The Geometry Package for the Pierre Auger Observatory

Lukas Nellen∗, I de Ciencias Nucleares, UNAM, 04510 Mexico, D.F.
Stefano Argiro, University of Torino, Italy

Thomas Paul, Northeastern University, Boston
Troy Porter, Louisiana State University, Baton Rouge

Luis Prado Jr, State University of Campinas, Campinas

Abstract

The Pierre Auger Observatory (PAO) [1] calls for two
sites with multiple semi-autonomous detection systems.
For example, the site currently under construction com-
prises 24 fluorescence telescopes pointing in different di-
rections and 1600 surface particle detectors spaces 1.5 km
apart. Each component, and in some cases each event,
provides a preferred coordinate system for simulation and
analysis. To avoid a proliferation of coordinate systems in
the offline software [2] of the PAO, we have developed a ge-
ometry package, implemented in C++, that allows the treat-
ment of fundamental geometrical objects in a coordinate-
independent way. This package makes transformations be-
tween coordinate systems transparent to the user.

The geometry package allows easy combination of the
results from different sub-detectors, at the same time as en-
suring that effects like the Earth’s curvature, which is non-
negligible on the scale of a single Auger site, are dealt with
properly.

The internal representations used are Cartesian. For
interfacing, including I/O, the package includes support
for Cartesian coordinates, geodetic (latitude/longitude and
UTM), and astrophysical coordinate systems.

INTRODUCTION

The geometry requirements of the Pierre Auger Observa-
tory is different from that of a typical high energy physics
experiment. First, the sheer size of the detector is much
larger, each site measuring ≈ 40 km in diameter. Over
this scale, details like the earth curvature are not negligi-
ble. Second, in a cosmic ray experiment, there is no single,
natural coordinate system. Instead, each component of the
detector (e.g., fluorescence eye) and/or event (e.g., the air
shower itself) has a preferred coordinate system. Tracking
many coordinate systems in general without special sup-
port can be tedious and error prone. Both problems can be
alleviated by having each geometry object (e.g., point and
vector) keep track of the coordinate system in which it is
represented. A useful consequence of this is that it becomes
possible to operate on objects in a coordinate-independent
way.

We implement these ideas in C++ as part of the geometry
package of the Offline Software [2] of the PAO.

Besides the general abstraction of affine linear algebra,

∗ lukas@nuclecu.unam.mx

the geometry package for the PAO also includes support for
geodetic and astronomical coordinate systems. The pack-
age also adds creator functions for coordinate systems fol-
lowing the conventions of the PAO [3].

AFFINE LINEAR ALGEBRA

Most implementations of (affine) linear algebra [5, 4, 6,
7] implement objects like points, vectors, and matrices as
collections of coordinates together with a set of operations
on them. This means that using such a package relies on a
convention to define which coordinate system a given ob-
ject’s coordinates are specified in. This is not a problem if
there is a single coordinate system used in an application.
Otherwise, the user has to code coordinate transformations
at the required places. Particularly, in a modularised frame-
work, one would typically rely on the use of a standard co-
ordinate system when passing information across module
boundaries. This introduces unnecessary transformations
if several modules that use the same coordinate system are
executed in sequence. And even in the general case, one
ends up transforming coordinates twice when crossing a
module boundary: first from the local coordinate conven-
tion of one module into the reference coordinate system,
and then from the reference system into the preferred sys-
tem for the second module.

The alternative, implemented in the geometry package
presented here, is to have each object keep track of the co-
ordinate system used for the current representation of the
object. This way, we leverage the advantage of the higher
level of abstraction possible in object oriented program-
ming and can write simply

Vector v1, v2;

...

Vector v3 = v1 + v2;

without worrying about the coordinate systems used to rep-
resent the vectors internally.

Operator overloading in C++ allows us to maintain a fa-
miliar notation for the operations in the geometry package.
This improves the readability of the code. The strong typ-
ing of C++ helps to detect attempts to perform undefined
operations, e.g., summing of two points, at compile-time.

When creating an object like a vector, or when the user
wants to extract the coordinates, e.g., for passing them to an
existing plotting package, one has to specify the coordinate
system in which the coordinates are defined:



CoordinateSystemPtr cs;

Vector v(1, 2, 3, cs);

double x = v.GetX(cs);

boost::tie(x, y, z) = v.GetCoordinates(cs);

Advantages of abstraction

The advantages of using coordinate system independent
geometry are that user is not required to track coordinate
systems, nor required to rely upon a global convention.
Geometry objects can be passed along module boundaries
without any transformation or common convention.

Since the penalty for using a specialised coordinate sys-
tem at a given point in the processing is reduced, code can
become more readable since the best coordinate system for
a given task can be used. For example, when importing ge-
ometry information from external, legacy software, one can
define a coordinate system following the conventions of the
external software and create geometry objects directly from
the coordinates provided. To set the position of a particle
generated in an air shower simulated by the CORSIKA [8]
Monte Carlo, one simply writes:

Point pos(corsikaParticle->fX*cm,

corsikaParticle->fY*cm,

0.*cm,

GetCorsikaCoordinateSystem());

Vector p(corsikaParticle->fPx*GeV,

corsikaParticle->fPy*GeV,

-corsikaParticle->fPz*GeV,

GetCorsikaCoordinateSystem());

without having to code the explicit coordinate transforma-
tion separately for position and direction of motion.

Risks of abstraction

Since the internal representation of an object can be in
an arbitrary coordinate system, the geometry package po-
tentially has to transform representations to a common rep-
resentation before operating on the internal representation.
If this happens in an uncontrolled way, it can lead to un-
necessary transformation. This can affect both the runtime
performance and the numerical precision of a program.

When (not) to transform

In order to avoid unnecessary transformation, the geom-
etry package makes the following guarantee:

If two objects are represented internally in the
same coordinate system, no transformation will
occur and the result will be represented in the
same coordinate system.

To help code performance to benefit from this guarantee,
all objects provide a TransformTo member function that

forces the internal representation to use the specified coor-
dinate system.

In practice, a module that uses a geometry objects cre-
ated in a different module will force the internal represen-
tation into its preferred coordinate system, thereby avoid-
ing uncontrolled transformations further down. Compared
to the standard scenarios outlined above, where each object
gets transformed once on exit of a module and then on en-
try to the next, we still save one coordinate transformation
since both transformations occur at once.

Implementation Issues

Coordinate system independent geometry adds the over-
head of first verifying if two objects are represented in the
same coordinate system and, if the coordinate systems dif-
fer, carrying out an additional coordinate transformation.
As explained in the previous section, the client code has
the possibility to force the representation of all objects into
a common coordinate system, thereby avoiding further co-
ordinate transformations. To minimise the remaining, un-
avoidable penalty of comparing coordinate systems, such
comparisons are implemented as object comparisons. This
means two objects are considered to be in the same coordi-
nate system only if the coordinate system objects they are
defined in coincide. It is not sufficient that two objects de-
fine the same coordinate system. Client code therefore has
to keep a handle to a coordinate system once it is created
(e.g., the local coordinate system at a point on the Earth’s
surface) and not re-create the coordinate system on every
use.

As an optimisation of coordinate transformation, a
caching mechanism stores recently used transformation
matrices between coordinate system. This way, most co-
ordinate transformations can be reduced the the minimum
number of required operations.

The lifetime of a coordinate system is determined by the
life-time of all handles to it, which can be explicitly held
in client code and implicitly held in objects defined using
it. The moment the last handle to a coordinate system is
deleted the coordinate system object itself has to be deleted.
This is a typical application for a shared pointer, since we
have no control over the lifetime of all objects that use a
coordinate system. We provide a CoordinateSystemPtr
based on the BOOST smart pointer library.

COORDINATE SYSTEM REGISTRIES

In order to define a coordinate system, one has to refer
to an existing coordinate system. Eventually, this leads to
a chicken-and-egg problem, which is resolved by requiring
the existence of an ultimate root-coordinate system. This
coordinate system has to be fixed ultimately by convention.
In order to avoid the reliance on the existence of this ulti-
mate coordinate system, whose definition is irrelevant for
the client code, the geometry package for the PAO provides
a registry of a few well-known coordinate systems: an earth



centred, earth fixed system, and a site local system (accord-
ing to conventions). Other, specialised coordinate systems
are available from different parts of the detector or event
data structures. Thus, the user is mostly isolated from the
creation of coordinate systems and the intended abstraction
is maintained.

GEODETIC COORDINATES

Position information of the detector components (fluo-
rescence eyes, surface detector stations) is provided by the
surveyors in Universal Transverse Mercator (UTM) coor-
dinates. The UTM projection is a conformal map on a ref-
erence ellipsoid, ideal for navigation. However, it defines
a non-linear coordinate system which is difficult to visu-
alise. In order to define a UTM transformation to a lati-
tude/longitude pair, one needs the reference ellipsoid used
to select a concrete member of the continuous family of
transformations defined by the general UTM prescription.

Figure 1: The geodetic latitude λ is defined as the angle
between the local vertical and a plane parallel to the equa-
torial plane. For an elliptical shape, it is not just the com-
lement of the zenith angle θ in the definition of spherical
coordinates.

The definition of latitude in geodesy uses the local ver-
tical as defined by a reference ellipsoid, not just the angle
λ = 90

◦
− θ, where θ is usual zenith angle in spherical

coordinates (fig. 1).
To support the transformations to and from geodesic co-

ordinates, the geometry package provides the UTMPoint

class for handling all the transformations between Carte-
sian and UTM coordinates of a point on the Earth.

QUALITY ASSURANCE

The geometry package has been developed in parallel
with a comprehensive set of unit tests. The tests are inte-
grated into the general test suite of the offline framework
of the PAO.

The unit tests are developed in parallel with the geometry
package, thereby providing rigorous testing during every
single step of the development, enormously reducing the
number of bugs to be resolved later on. It also allowed us
to do some major refactoring of the code without breaking
any existing code while at the same time making further
developments significantly simpler.

EXPERIENCES

The experiences with the geometry package were very
positive. The integration of data from different detector
components (surface and/or one or more fluorescence sta-
tions) was significantly simplified due to the coordinate
system independence. So far, we have not noticed any per-
formance penalties due to the additional tracking of a coor-
dinate systems associated with each object.

FUTURE DEVELOPMENTS

For the immediate future, we plan to add astronomical
coordinate systems to the package. We are also working on
extending the affine geometry part by adding line and plane
objects.

An extension still under investigation is error propaga-
tion together with coordinate system independent geome-
try. It requires handling and transforming an error matrix
for geometry objects, and an interface for obtaining the in-
formation in a reasonable way that does not give up the co-
ordinate independence of the package. Error propagation is
important when using the geometry package in reconstruc-
tion. For example, when we obtain the axis of a shower
from the intersection of two shower-detector planes, each
known only with a certain error, we need to obtain error
estimates on position and direction of the shower axis.

ACKNOWLEDGEMENTS

We would like to thank all our collaborators, particularly
our patient testers, for their help during the development of
the Offline Framework and the geometry package.

REFERENCES

[1] Pierre Auger Observatory homepage, http://www.auger.org/

[2] The Offline Framework of the Pierre Auger Observatory, L.
Nellen et. al., these proceedings;

[3] Conventions of the Pierre Auger Observatory,
https://edms.cern.ch/cedar/plsql/doc.info?document id=317390

[4] BLAS (Basic Linear Algebra Subprograms),
http://www.netlib.org/blas/

[5] Blitz++, http://www.oonumerics.org/blitz/

[6] CLHEP, http://wwwasd.web.cern.ch/wwwasd/lhc++/clhep/

[7] ROOT, http://root.cern.ch/

[8] D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz,
T. Thouw, Report FZKA 6019 (1998); http://www-
ik.fzk.de/˜heck/corsika/




