
The Geometry Package of the Pierre Auger
Offline software
Lukas Nellen (I. DE CIENCIAS NUCLEARES, UNAM)

Stefano Argiro (University of Torino)

Thomas Paul (Northeastern University)

Troy Porter (Louisiana State University)

Luis Prado Jr (State University of Campinas)

Why a new geometry package?

The Pierre Auger Observatory consists of two, semi-autonomous detection systems for cosmic ray air showers: the
surface array and the fluorescence detectors.
The Observatory covers an area of 3000 km2, corresponding to a linear extend of ≈ 60 km.

As a consequence, one has to be careful in the treatment of geometrical quantities:
● The earth's curvature is non-negligible (0.5 deg)
● Each component of the detector has a different, natural and preferred coordinate system.
● Surveying work uses geodesic coordinate systems, like the Universal Transverse Mercator (UTM) grid, which are
unfamiliar to physicists.

The map of the southern site in Malargüe, Argentina

A surface detector station

A fluorescence detector building

Goals of the geometry package

Provide an abstract, coordinate system independent geometry library without compromising usability.
Handle geodesic and astronomical coordinate transformations.

The Geometry package is:

Part of the offline software of the Pierre Auger Observatory

Implemented in C++

Split in a lower-level, generic part
 higher-level, Auger specific part

The lower level part provides classes for:
Coordinate Systems
Vectors, Points, Axial Vectors
Active transformations

UTM coordinates
Reference Ellipsoids (parametrisation of the shape of the Earth)

The lower level part also implements standard operations:
Sum, difference, scaling
vector size, point distance, angle
Object creation in Cartesian, cylindrical, and polar coordinates

The higher level part implements Auger specific functions and
conventions:

Factories for local coordinate systems
Registry of well-known coordinate systems

Data Integration
requires agreement
about geometry

Why abstract geometry?

Traditionally, one relies on conventions for dealing with coordinate systems in
scientific code, at least in the interface between different software modules.

Problems of relying on conventions:
● Conventions can be violated, ignored, or changed without updating all the code
● Imposing conventions globally can lead to the use of non-optimal coordinate
systems
● Requiring conventions in the interface only can introduce two coordinate
transformations on module boundaries: Internal

1
 to convention to internal

2

In an abstract geometry, coordinates are hidden in the private part of the object. To
achieve coordinate-system independence, one has to
● Carry coordinate system information in every object
● Compare and, if necessary transform, coordinates before performing operations.

The price of coordinate system independence is that the user has to specify a
coordinate system for
● Setting coordinates
● Retrieving coordinates

The advantage of coordinate system independence is the ease with which one can
combine information from different parts of the experiment without worrying about
convention. It encourages the use of specialised, optimised coordinate systems,
leaving transformations to the geometry package. The consequence is cleaner user
code. Arbitrarily complicated chains of transformations can be set up and tracked
transparently, thereby removing a common source of errors.

Contact: Lukas Nellen, ICN-UNAM, Mexico; e-mail: lukas@nuclecu.unam.mx

The Geometry Package of the Pierre Auger
Offline software (2)

Some implementation details

Every object contains a (private) set of coordinates and a reference to the coordinate
system used to define them.

Coordinate systems are shared, using a (reference counted) smart pointer
CoordinateSystemPtr to guarantee
● that a coordinate system is kept alive as long as some object uses it
● that the coordinate system is deleted once nobody uses it.

Coordinate systems are defined relative to other coordinate systems. The
transformation between two system results in a chain of transformations. When
transforming, such a chain is evaluated only once and cached, that way reducing the
overhead when transforming a large number of objects to a given coordinate system.

The geometry package uses two external libraries:
● BOOST for smart pointers and tuples
● CLHEP for the underlying implementation of coordinate-system dependent geometry.

When (not) to transform coordinates

The internal representation of all objects participating in an operation has to be in
the same coordinate system to be able to perform the operation. If necessary, some
objects have their internal representation transformed.

Guarantee: No transformation will occur if all objects are already in the same
coordinate system.

Optimisation help: the user can manually force the transformation of the
representation of an object into a given coordinate system to prevent unwanted,
uncontrolled coordinate transformations later.

Experience with the geometry package

The geometry package is used throughout the offline software of the Auger
Observatory. Combining data has proven very simple.

The strong typing of C++ helps to detect illegal operations, e.g., the summing of two
points.

The user feedback has been very positive. We have not indications of any
performance problems induced by the abstract geometry.

Next steps:

● Extend the package to include
Lines, planes, ...
astronomical coordinates

● Full benchmarking and profiling

Stereo reconstruction of an event seen from two
fluorescence detectors. The shower detector planes
are determined locally using coordinates optimised
for one detector station. The geometry package
makes combining the information easy.

Particle*
CorsikaShowerFileParticleIterator::GetOneParticle()
{
 for (;;) {
 const Block::ParticleData* corsikaParticle =
GetOneParticleRecord();

 // end of particle list
 if (!corsikaParticle) return 0;

 int particleId =
 Corsika::CorsikaToPDG(int(corsikaParticle-
>fDescription/1000));

 // skip unknown particles...
 if (particleId == Particle::eUndefined) continue;

 fCurrentParticle =
 Particle(particleId,
 Particle::eShower,
 Point(corsikaParticle->fX*cm,
 corsikaParticle->fY*cm,
 0.*cm,
 GetCorsikaCoordinateSystem()),
 Vector(corsikaParticle->fPx*GeV,
 corsikaParticle->fPy*GeV,
 -corsikaParticle->fPz*GeV,
 GetCorsikaCoordinateSystem()),
 TimeInterval(corsikaParticle->fTorZ*ns -
fTimeOffset),
 corsikaParticle->fWeight);
 return &fCurrentParticle;
 } // for (;;)
}

Routine to process information from an external air shower simulator.
Note the use of a special Corsika coordinate system, set up according to
the conventions of Corsika, which allows us to create points and vectors
directly from the coordinates stored by Corsika.

#include <boost/tuple/tuple.hpp>
Point pt(...);
CoordinateSystemPtr myCoordinateSystem;
double x;
double y;
double z;

...

boost::tie(x, y, x) = pt.GetCoordinatesmyCoordinateSystem);

Using BOOST tuples and ties, we can retrieve all three coordinates of
a point in a single subroutine call.

Geodesy

Surveying data, e.g., the exact positions of all detectors, is provided in
Universal Transverse Mercator (UTM) coordinates. To avoid having these
curved coordinates in physics code, transformations between Cartesian and
(curved) Geodesic coordinates. The information about the ellipsoid used to
approximate the shape of the Earth is provided as another class

Testing and QA:

The geometry package is developed with a comprehensive test
of unit tests. They turned out to be extremely helpful for
delivering a high quality package.

The tests are part of the test suite for the Auger Offline software.
They can be run stand-alone during the development and
maintenance of the geometry package

