
The Offline Framework of the Pierre Auger Observatory

Lukas Nellen∗, I de Ciencias Nucleares, UNAM, 04510 Mexico, D.F.
Stefano Argiro, University of Torino, Italy

Thomas Paul, Northeastern University, Boston
Troy Porter, Louisiana State University, Baton Rouge

Luis Prado Jr, State University of Campinas, Campinas

Abstract

The Pierre Auger Observatory [1] is designed to un-
veil the nature and the origin of the highest energy cosmic
rays. Two sites, one currently under construction in Ar-
gentina, and another pending in the Northern hemisphere,
will observe extensive air showers using a hybrid detec-
tor comprising a ground array of 1600 water Cherenkov
tanks overlooked by four atmospheric fluorescence detec-
tors. Though the computing demands of the experiment
are less severe than those of traditional high energy physics
experiments in terms of data volume and detector complex-
ity, the large geographically dispersed collaboration and
the heterogeneous set of simulation and reconstruction re-
quirements confronts the offline software with some special
challenges.

We have designed and implemented a framework to al-
low collaborators to contribute algorithms and sequencing
instructions to build up the variety of applications they re-
quire. The framework includes machinery to manage these
user codes, to organise the abundance of user-contributed
configuration files, to facilitate multi-format file handling,
and to provide access to event and time-dependent detector
information which can reside in various data sources. A
number of utilities are also provided, including a novel ge-
ometry package which allows manipulation of abstract ge-
ometrical objects independent of coordinate system choice.
The framework is implemented in C++, follows an ob-
ject oriented paradigm, and takes advantage of some of the
more widespread tools that the open source community of-
fers, while keeping the user-side simple enough for C++
non-experts to learn in a reasonable time. The distribu-
tion system includes unit and acceptance testing in order to
support rapid development of both the core framework and
contributed user code. Great attention has been paid to the
ease of installation.

INTRODUCTION

The offline framework of the Pierre Auger Observatory
is the central backbone of all simulation, reconstruction,
and analysis work done by the collaboration. As such, it
has to meet the following requirements:

• Flexibility to accommodate different types of analysis
• Ease of use for the physicist
• Ease of installation
∗ lukas@nuclecu.unam.mx

• Maintainability over the experiment lifetime of 20
years and for some time beyond.

To satisfy the requirements, the offline framework is im-
plemented

• in C++
• in a highly modularised fashion
• relying wherever possible on well-supported, open

standards like XML,
• and avoid locking into a single provider solution.

The framework consists of several major sub-packages
containing several components. The contained packages
are Utilities, Framework, EventIO, and Modules. Addi-
tionally, the offline core provides database utilities for pro-
cessing and preparing the data that are to be made avail-
able via the database interfaces in the offline framework.
In Modules, we include both core modules that provide ad-
ministrative and support functions and modules that con-
tain physics code. The later are expected to be distributed
independently in the future. The dependence within the
sub-packages is strictly non-circular, following the order
above.

UTILITIES

The Utilities sub-package contains services that are, in
general, not specific to the needs of the Pierre Auger Ob-
servatory. The utilities include: specialised C++ service
libraries, error logging, mathematics and physics services,
a geometry package [2], configuration parsing, and testing.

EVENT IO

The event IO libraries provide access to different formats
of event storage. The native event format can store the full
information of the offline event, while other formats, like
the raw data acquisition formats [3, 4] hold only part of the
information available in the event. Some formats yet, like
the output format of air shower simulation programs [5, 6],
are read only.

The event IO libraries can be called by any piece of
code using the framework. Particularly, the core framework
provides a simple set of modules for reading and writing
events. The real work is deferred to the Event IO libraries.

Combining the native IO format with simple reader and
writer modules, it is possible to dump the event at any given
processing stage and resume processing later, in a separate

Module 1

Module 2

Module 3

Atmosphere SDFD

Observatory

StationEye
Tel PMT

SD
Station
PMT

FD
Eye
Telescope
Pixel

Detector Description Framework

Detector

Shower

Event

Figure 1: General structure of the offline framework

job. This feature is important for the creation of event sub-
sets or to avoid the repetition of computationally intense
steps in an analysis-reconstruction chain. Libraries of par-
tially simulated or reconstructed events can be created this
way.

FRAMEWORK

The framework of the offline software consists of three
main parts:

• Run control with configuration management and mod-
ule sequencing

• access to detector data
• access to event data.

Configuration management

All configuration files used by the offline framework are
in XML format. A central bootstrap file, specified when
running a program using the offline framework, contains
links, as file paths or URI’s, to the individual configuration
files of all components.

Error checking of the configuration files is implemented
using XML schema descriptions of the syntax of the con-
figuration files. This way, most of the error checking is
moved from the offline framework or client module into
the XML reader. This results in simplifications in the con-
figuration reading and checking code.

A concatenation of all the configuration files used in a
run can be written out, resulting in an XML file that con-
tains detailed record of the conditions of a given run. This
file can be displayed in an XML-capable browser for exam-
ining the log file. The format of the log file is the same as
that of a bootstrap file. As a consequence, one can re-create
the conditions of any given run simply by feeding the log
file to the auger offline main program.

Modules and sequencing

As part of parsing the configuration for a given run, the
RunController part of the framework sets up the sequence
of modules to be executed. The information is provided in
the module sequence file. The information not only selects

<loop numTimes="unbounded">

<module> EventFileReader </module>

<loop numTimes="10" save="yes">

<!-- Generate new event from Aires/Corsika

data stored in Event -->

<module> EventGenerator </module>

<module> Simulator </module>

<module> EventFileExporter </module>

</loop>

</loop>

Figure 2: A simple example of a module sequence

the modules to be pulled in for a run, but also controls the
sequence in which the modules are executed. For this pur-
pose, we define a simple XML application for sequencing.
This application has two types of XML tags: a module tag
for selecting modules to be used and a loop tag for group-
ing and loop control (see figure 2).

The loop-tag has a few attributes that affect the way
the loop is executed. Also, modules can affect looping
by indicating, via return codes, that the run control should
continue with the next iteration of the loop, or break out
of the loop completely. The attribute numTimes specifies
the number of iterations of a loop. The save attribute re-
quests that the current event should be restored on every
pass through the loop tag. Without saving the event, the
loop continues with the event as left at the end of the pre-
vious iteration.

For more complicated sequencing, the users have the
possibility to provide their own sequencing in a user-
supplied main routine.

The modules have to comply to a simple interface,
providing an Init, Run, and Finish method. A
REGISTER MODULEmacro in the code of the module makes
sure the module is known to the RunController.

Data access

The framework provides two hierarchies for accessing
data: The Detector for access to slowly changing data
like detector configuration and geometry, and calibration

and monitoring data. The Event for the data related to
a single event. Both implement parallel hierarchies that
follow the detector hardware hierarchy.

The Detector

The detector (fig. 3) provides a unified interface to mul-
tiple data sources. The user sees a standard hierarchy, fol-
lowing the detector layout. The actual layout and organi-
sation of the data on disk can follow the same hierarchy,
e.g. in the case of an XML file, or a different one, as in
the case of a relational database. A manager in the back-
end of the detector implementation translates between the
formats. Furthermore, it is possible to have more than one
manager for a given datum. This way, a special manager
can override data from a general manager. For example,
a user can decide to use a database for the majority of the
description of the detector in a run and change a few se-
lected pieces of information, overwriting them with data
in an XML file. The selection of data sources to query is
configurable via an XML file and the user code itself is un-
aware of the selected configuration.

The Event

The Event (fig. 4) acts as the backbone structure for com-
munication between the modules in an offline-chain. It is
set up to hold the raw and calibrated event data, augmented
with Monte Carlo data from simulations and reconstruction
information accumulated during analysis.

The Event structure includes a set of well-defined pro-
tocols which allow the Event to be incrementally built up
by sequences of modules and interrogated at any step to
discover the current constituents of the Event.

EXTERNAL PACKAGES

The Offline Framework depends on packaged written
and maintained outside the offline developer team. Some of
the packages are maintained by other groups in the collab-
oration, whereas other packages are developed and main-
tained externally to the collaboration. Libraries for access
to raw event data, provided by the data acquisition teams,
fall into the first class. External packages used in the im-
plementation of the Offline Framework are:

• ROOT
• Boost
• Xerces-C
• CLHEP
• Aires
• Geant 4 (optional)

It is important that the number of external packages used is
not too large, since a site will have to install them before
they can install a fully operational version of the Offline
Framework.

BUILD SYSTEM

As a build and configuration system, the Offline Frame-
work uses the GNU tools autoconf, automake, and libtool.
The advantage of using these tools is that the resulting dis-
tribution requires only readily available software which is
typically installed on a *nix workstation or server (compil-
ers, make, Bourne compatible shell, awk). Also, the result-
ing sequence of instructions

configure

make

make install

is well known to and understood by system administrators
and advanced users.

For the user code, simple GNU makefiles are pro-
vided as part of the documentation. A shell script,
auger-offline-config, helps to propagate information,
e.g., the location of external packages for linking, from the
configuration step of the Offline Framework to the user.

QUALITY CONTROL

GNU automake provides hooks for including testing,
particularly as part of building a release. The Offline
Framework provides a comprehensive set of unit tests that
connect to these hooks. This way, we can be sure that all
existing tests are run before a new release is cut and shipped
to the users.

More detailed validation, especially the physics valida-
tion, will incorporated as acceptance tests into the test suite
of the offline framework.

ACKNOWLEDGEMENTS

We would like to thank all our collaborators, particularly
our patient testers, for their help during the development of
the Offline Framework.

REFERENCES

[1] Pierre Auger Observatory homepage, http://www.auger.org/

[2] The Geometry Package for the Pierre Auger Observatory, L.
Nellen et. al., these proceedings

[3] The Pierre Auger Project Central Data Acquisition System,
Antoine Letessier-Selvon, Auger note GAP 1999-003

[4] Auger Fluorescence Online Software, http://www-
ik.fzk.de/˜mathes/

[5] Aires distribution page, http://www.fisica.unlp.edu.ar/auger/aires/

[6] D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz,
T. Thouw, Report FZKA 6019 (1998); http://www-
ik.fzk.de/˜heck/corsika/

SDetector

Station

Atmosphere

Detector

Channel

Eye

Telescope

Channel

FDetector

PMT

MySQL

SDynamicManager

SStaticManager

XML ROOT

SOverrideManager

SManagerRegister

SOverrideManager*

SStaticManager*

SDynamicManager*

User Interface

DataRequest

Example SD Implementation

Example of Interface use:

theDetector−>GetSDetector()−>GetStation(47)−>GetDecayTime();

Manager Interface

Figure 3: The detector class hierarchy with several manager back-ends

Eye Station
ShowerSRecData

ShowerFRecData

ShowerRecData

// retrieve reconstructed photons
for (pix = tel−>PixelsBegin(); pix!= tel−>PixelsEnd(); pix++){

Telescope::PixelIterator pix;

Telescope * tel = ...

}
 TraceD * recphotons = (*pix)−>GetRecData()−>GetPhotonTrace();

Telescope

Channel
RecData

SimData
ADCTrace

Pixel
RecData
SimData
TriggerData

 Photons

FEvent SEvent
Axis

Primary

Photons

TriggerData
SimData
RecData

PMT
SimData
VEM
ADCTrace

LDF

Skewness

Longitudinal Prof

X0,Xmax

Energy

Event

Primary
Energy
Direction
Position
Profile
dEdX
FluorescenceLight
CerenkovLight

Particles

ShowerSimData

ShowerMonoGeom
EyeSimData
EyeRecData

TriggerData

Figure 4: The event hierarchy

