
The BABAR Analysis Task Manager

W. Roethel,Univ. of California at Irvine, Irvine, CA, USA
D. A. Smith, A. Ceseracciu,SLAC, Menlo Park, CA, USA

T. Adye,RAL, Chilton, Didcot, Oxon, UK
D. Bukin,Budker Institute of Nucl. Physics, Novosibirsk, Russia

G. Dubois-Felsman,Caltech, Pasadena, CA, USA
A. Forti, Univ. of Manchester, Manchester, UK

D. Hutchcroft,Univ. of Liverpool, Liverpool, UK
P. S. Jackson,Univ. of London, Royal Holloway, Egham, Surrey, UK

D. Kovalskyi,Univ. of Maryland, College Park, MD, USA
For the BABAR Computing Group

Abstract

BABARs Computing Model 2 introduced a new event
store and new framework for the bookkeeping of
BABAR data. TheBABAR Analysis Task Manager, as part
of the new bookkeeping framework, acts as an interface
between the information stored in theBABAR bookkeeping,
the data served by the event store, and the offline frame-
work. It provides the basis for large scale processing of
BABAR data, which is necessary for data production or data
analysis.

INTRODUCTION

In the new Kanga event store [1]BABAR data is orga-
nized into collections of events. These event collections
provide an interface to an underlying set of ROOT files
which contain the data itself. Since the collections are
based on ROOT files, data access is not tied to any partic-
ular server technology. However simple network file sys-
tems can not maintain the requirement of providing data
concurrently to several thousand jobs.BABAR has therefore
developed xrootd [2], a high-performance, rootd compati-
ble file server which satisfies all requirements for stability,
scalability and performance. The newBABAR bookkeep-
ing [3] keeps track of all collections stored in the event
store. Access to these collections is made over predefined
datasets, which are sets of collections to be used for data
analysis or data production, in particular the general pro-
duction of skimmed data, which mostBABAR analyses de-
pend upon.

Life Cycle ofBABAR Data

Any BABAR analysis or skim production typically fol-
lows the following steps:

• Selection of one or more suitable datasets providing
the list of collections used as input for processing.

• Define jobs to be run on the computing farms to pro-
cess the input and write output data to temporary lo-
cation.

• In a post processing step, merge the output of several
jobs into larger data files.

• Import the merged collections into the event store and
insert information on these collections into the book-
keeping database.

A summary of the life cycle ofBABAR data is given in Fig-
ure 1.

The Task Manager provides an automated interface that
deals with managing and bookkeeping of analysis and pro-
duction jobs including the creation, submission, and valida-
tion of jobs and the subsequent post-processing. It consists
of two major, independent components, the bookkeeping
framework that provides the user interface and is responsi-
ble for the bookkeeping of jobs and job output, and the job
processing framework, which deals with running and vali-
dating the particular jobs in a scalable environment on the
computing farms.

THE TASK MANAGER BOOKKEEPING
FRAMEWORK

A task in the context of the Task Manager defines the
overlaying unit in which the single jobs are managed. Ev-
ery task is defined over a configuration which is common
for all jobs within a task and stores information on the pro-
cessing itself (’How’ the data should be processed, e.g.
the application to be used for processing, the global out-
put location of the data, etc.), and one of more datasets
(’What’ should be processed). Both, the configuration and
the datasets to be used in a task, are updateable. This leaves
it up to the user to define the actual boundaries of a task. As
an example a task could be defined to process all data for
a single analysis or for several analyses. The flexibility in
the configuration also allows users to continue processing
with a new version of their analysis software without re-
quiring them to re-process data already processed with the
previous release. The Task Manager creates the jobs to be
run on the computing farms based on the list of input col-
lections provided by the defined datasets and requirements
specified by the configuration, e.g. the maximum number



Task 
Manager

Batch Farms

Skim Jobs / 
Analysis Jobs

Merge Jobs

Database

In
put 

Colle
ct

io
ns

M
erged Skim

 / 

Analysis 

Collections

Temporary Skim / 
Analysis Collections

Figure 1: The Life Cycle ofBABAR data collections. Collections are used as input for data processing which creates new
collections that are put back into theBABAR event store and themselves can be used as input for further processing.

of events to be processed per job. At any time all jobs are
in one of many different job states. Initially all newly cre-
ated jobs are in the ’prepared’ status, i.e. these jobs are
ready to be run on the computing farms. Other common
job states are ’submitted’, a job has been submitted to the
local job scheduler to be run on the computing farms, ’ok’,
a job has completed successfully and has been validated,
and ’failed’, which indicates that the processing of this job
has failed. Other job states can be defined by users if found
to be necessary. The scheduling of the jobs on the com-
puting farms is handles by the local job schedulers. The
Task Manager provides an interface to these (currently LSF
and PBS are supported) where job monitoring features are
provided by storing the ids of the jobs as used by the job
scheduler. The Task Manager does not directly execute the
application on the computing farms, but rather hands the
execution of the processing over to a job wrapper. The job
wrapper is responsible for setting up the necessary envi-
ronment for processing and validating the success of the
processing. The job wrapper will be discussed in detail in
the following section. When jobs have finished running on
the computing farms, their job status is updated according
to information provided by the job wrapper. Failed jobs can
be resubmitted if necessary and a basic versioning system
keeps track of the various different processing attempts.

Post Processing

In the current version of the Task Manager the merging
of the different, rather small, output collections of different
analysis or skim production jobs is managed by a separate
task. The configuration is similar to the underlying analy-
sis or production task, the major difference being that the
input to the merge task is not defined over a dataset but
over the output of another task. This is somewhat cum-
bersome and in the updated version of the Task Manager,
which is currently under development, the post-processing
will be an integrated part of the main analysis or produc-
tion task itself. The Task Manager includes tools to import
the output of the post-processing into the event store and
insert the necessary information on the data into theBABAR
bookkeeping.

THE TASK MANAGER JOB PROCESSING
FRAMEWORK

A crucial requirement for running analysis and produc-
tion jobs is scalability. Data production may need to run
more than 1000 jobs concurrently. This is achieved by
defining a run environment that uses local resources when-
ever possible. In particular, jobs are not allowed to contact
relational databases from the computing farms, and all data



Task Manager

Output (global)

Configuration
File

Job Report File

Configure / 

Run

Jo
b R

eport

Input

xrootd

Job 
Wrapper

Local Output

Local Batch 
Node

No ENVARs!!!

No RDBMS Access!!!

Framework 
Application

Figure 2: The configuration of the Task Manager Processing Framework. Jobs are required to run in a locally confined
processing environment to allow for scalability.

output is written to local disk on the processing nodes and
only after completion of the processing and validation of
the output is the data copied to a global location. Input
data is served over xrootd and poses no problem in terms
of scalability. Setting up this local environment is one of
the responsibilities of the job wrapper. Information on the
particular configuration of an individual job, e.g. the name
of the application and the final, global output location of the
data, etc., is passed on to the job wrapper over a job con-
figuration file. After managing the execution of the appli-
cation, the job wrapper verifies the success of the process-
ing. This is done on different levels beginning with the exit
code returned by the application itself up to the validation
of the integrity of the output collections. The main source
of information for validation is the job report file, which is
created by everyBABAR offline application. It contains all
important information on the processing in a standardized
format, including information on data input and output, and
a summary of errors and warnings. Provided the success of
the processing is verified, the job wrapper copies the output
to the assigned global location, collects all information on
output and processing, including error codes and warning
messages, which should be passed on to the Task Manager
bookkeeping framework, and creates a job report file itself.
This job report file is used subsequently by the bookkeep-
ing framework of the Task Manager to update the job sta-

tus. Figure 2 summarizes the processing framework as it is
used by the Task Manager.

DISTRIBUTED PRODUCTION

The standard bookkeeping tools for dataset management
and data distribution allow the Task Manager to run in a
distributed environment. Every local production site re-
quires its own dataset which contains a list of collections
to be processed at the site. The dataset is used to drive
the necessary data imports to the site and define the input
to the production tasks. The output collections of the pro-
duction are transferred back to the main event store and in-
serted into the bookkeeping using the standard Task Man-
ager tools. The skim production currently is using this sys-
tem of distributed production by sharing production efforts
between SLAC (US), GridKa (Karlsruhe, Germany) and
Padova (Italy). A summary of the distributed production is
shown in Figure 3.

SUMMARY AND OUTLOOK

First versions of the Task Manager were used in Novem-
ber 2003. Since then in particular the processing frame-
work has undergone many changes. Throughout 2004 it
has been successfully used in the production of skimmed



Site CSite BSite A

D
at

as
et

 1

D
at

as
et

 2

D
at

as
et

 3

Database (SLAC)

Skim Skim SkimSkim
m

ed 

Collections

Mirror

Event Store
(SLAC) 

Figure 3: Distributed production in the context of the Task Manager. Local production sites use designated datasets and
local database mirrors to import the required input collection and configure the production tasks. Output of the production
is transferred back to the main event store at SLAC.

data, which provided the basis for many results presented at
ICHEP 2004 [4]. To date over 100,000 individual skim pro-
duction jobs have been managed by the Task Manager, with
up to 1200 jobs running concurrently. Currently prepara-
tions are underway for the next round of skim production
beginning in Nov. 2004. Improvements will include easier
job configuration, full bookkeeping support for processing
single collections with several jobs, and integrated support
for post-processing. Looking beyond that the possibility
of running the Task Manager in the GRID is an interesting
option. The locally confined job wrappers make the Task
Manager an ideal candidate for running in a distributed en-
vironment. LocalBABAR sites would be selected based on
availability of required software releases and input data col-
lections. The validation of the processing and the transfer
of the output data to assigned locations would be provided
by the job wrapper itself. Distributed production would be
run by a single task at a central location and would require
only one operator to manage the effort. This would resolve
the need of having one operator for every local site, as is
currently the case.

REFERENCES

[1] M. Steinke, P. Elmer,et al., “How to Build an Event Store
- The New Kanga Event Store forBABAR’́, Proceedings of
CHEP04, 2004.

[2] A. Hanushevsky, A. Dorigo, F. Furano, “The Next Generation
Root File Server”, Proceedings of CHEP04, 2004.

[3] D. A. Smith, et al., “BABAR Bookkeeping - A Distributed
Meta-Data Catalog of theBABAR Event Store”, Proceedings
of CHEP04, 2004.

[4] “32nd International Conference on High Energy Physics”,
http://ichep04.ihep.ac.cn .


