
Tape

Stores a file

S
R

Allocate and
reuse space

Replica Catalog

Publ
ish
File

 File
repli
ca?

Logical

URLs’list

SU

Transport URL

Transfer files

SRM AND GFAL TESTI NG FOR LCG2

V.Petoukhov, M.Sapunov,E.Slabospitskaya* , IFVE, Protvino, Russia

Abstract
� Storage Resource Manager (SRM) and Grid
File Access Library (GFAL) are GRID middleware
components used for transparent access to Storage
Elements. SRM provides a common interface (WEB
service) to backend systems giving dynamic space
allocation and file management. GFAL provides a
mechanism whereby application software can access a file
at a site without having to know which transport
mechanism to use or at which site it is running.
 Two separate Test Suites have been developed
for testing of SRM interface v 1.1 and testing against the
GFAL file system. Test Suites are written in C and Perl
languages.
 SRM test suite: a script in Perl generates files
and their replicas. These files are copied to the local SE
and registered (published). Replicas of files are made to
the specified SRM site. All replicas are used by the C-
program. The SRM functions, such as get, put, pin, unPin
etc. are tested using a program written in C. As SRMs do
not perform file movement operations, the C-program
transfers files using "globus-url-copy". It then compares
the data files before and after transfer.
 GFAL test suite: as GFAL allows users to
access a file in a Storage Element directly (read and
write) without copying it locally, a C-program tests the
implementation of POSIX I/O functions such as
open/seek/read/write. A Perl script executes almost all
Unix based commands: dd, cat, cp, mkdir and so on. Also
the Perl script launches a stress test, creating many small
files (~5000), nested directories and huge files. The
investigation of interactions between the Replica
Manager, the SRM and the file access mechanism will
help making the Data Management software better.

 For any questions regarding this poster contact the
Elena.Slabospitskaya@ihep.ru (SRM) and
Matvey.Sapunov@ihep.ru (GFAL).

WHAT IS SRM? WHAT IS GFAL?
Grid Storage interactions require multiple software
components:
- Replica Catalog services are explored for public access
of data files in Grid
- Storage Resource Manager (SRM) software is used for
dynamic resource management
- File access mechanism to access files from a storage
system to worker nodes (GFAL).
 SRM manages a disk cache or tape archiving
system. It has two main functions: dynamic space
allocation and dynamic file pinning. Basically SRM is
represented as .web service using gsoap/https. SRM does
not perform file transfer.

GFAL provides a mechanism for operation with
files from UI or WN for users and jobs without
transportation this files from Storage. If file exists in a
disk cache of Storage, the client can read the file directly
from a cache or transfer this file into its local disk. SRM
pins this file during the operation time of client. If there is
no file in a disk cash, SRM will get a file from its source
location (e.g. tape).

Objectives
The development of Test Suites for new LCG

middleware – SRM and GFAL

SRM Test Suite

The Test Suite is developed for testing of SRM interface
v.1.1 with multiple data files into one SRM request (up to
99) functions. The basic goal is to test all SRM methods
defined in SRM v1.1, including multi-file requests

Figure 1. A logical schema of the SRM Test Suite

APPLICATION LAYER

GFAL LAYER

SRM
Client

Replica
Catalogue

Client

Information
Service Client

This suite requires a grid server’s set (UI, RM, default
classic SE and SRM server).

Sources of this Test Suite are in
http://isscvs.cern.ch:8180/cgi-bin/cvsweb.cgi/edg-
tests/tests/Stress/SRM/?cvsroot=lcgware

The SRM test suite consists of 2 programs (The
Perl script is preparatory for the C-program)
 1) A first program (a script in Perl) generates the
data files and their replicas. The names of files and sizes
(1-10 Mb) are generated by means of a random number
generator. The script creates the specified number of files
by "dd". These files are copied to the local SE and
registered (published). Replicas of files are made to the
specified SRM. All replica names are written to the file
and are used by the C-program.
 2) The second part of the test suite is a program
written in C-language. First version of the test programs
(srm_testPing, , srm_testPut srm_testgetProtocols,
srm_testgetMetaData and srm_testGet) had been
developed by Jean-Philippe Baud . All basic
SRM operations are tested in our Test Suite - get, put,
Pin, UnPin, MkPermanent, setFileStatus, getEstGetTime,
getEstPutTime, getFileMetaData ,getProtocols,
AdvisoryDelete. The C-program leads on couple put/get
operations.
The main algorithm of put/get operations is presented
below.

srm_put
• Reserve space before the file transfer (srm_put)
• mkPermanent
• set Files Status to 'Running'
• A data files put to SRM server by helps "globus-

url-copy"
• set Files Status to 'Done'

 srm_get
• pin file

• set Files Status to 'Running'

• A data files get from SRM server to UI
• set Files Status to 'Done'
• unpin files
• compare files before and after transfer by "diff"
• delete

The program try to delete files by helps. AdvisoryDelete
SRM function and “edg-gridftp-rm"

 SRM Functions are working :

• soap_call_tns__ping
• soap_call_tns__getProtocols
• soap_call_tns__put,
• soap_call_tns__get,
• soap_call_tns__getMetafileData
• soap_call_tns__setFileStatus (' Done')
• soap_call_tns__setFileStatus (' Running')

 SRM Functions - Stubs:
soap_call_tns__getEstGetTime

• soap_call_tns__getEstPutTime
• soap_call_tns__pin, Unpin
• soap_call_tns__mkPermanent

GFAL Test Suite
GFAL is additional layer that provide a POSIX I/O interface

to heterogeneous Mass Storage Systems in a GRID
environment. Supporting services are: Replica Catalogs, Storage
Resource Managers, Mass Storage System protocols (File I/O,
Root I/O, Rfio I/O, dCAP I/O), MDS

The test suite has been created to check in access to Mass
Storage System with standard POSIX I/O functions over
mechanism realized in GFAL. We are going to verify a
functionality of existing applications and utilities, and tp
test standard C functions. Since we are interested in
*NIX working environment, the Perl language is used as
basic tool for writing the test for external utilities. The
important Perl feature is a possibility to emulate *NIX
environment during an execution of external applications.
Another feature is the ability to realize a complex
algorithm without special experience.
The main algorithm assumes the following steps:

• Mounting of the file system over GFAL.
• Execution of most usable *nix commands.
• Checking of transferred data’ integrity.
• Creation of much (~300) small files.
• Creation of huge (5*512Mb) files.
• Checking of integrity
• Unmounting file system

In the test suite we check the functionality of widely used
system utilities like “cat”, “cp”, “mv”, “diff”, “dd”, etc.
Also, we try to develop stress test for GFAL in our test
suite. The stress test flow consists from following steps:
creation of many nested directories, 300 directories nested

in each other; making of five big files 512 Mb each; a
construction of 5000 small files, size of each file may be
in range between 512 bytes and 512 Kb; creation of 5000
directories nested in parent directory. All files are created
with dd utility.

 Unfortunately, only the ability of creation many files was
tested. No time or access speed measurements were made.
We will include such time or access speed measurements
in the new, improved version of test suite.

A small and simple program was written for test
of basic C functions, such as open()/seek()/read()/write().
We don’t describe this program because it wasn’t
properly tested. GFAL was checked in April 2004 with
our test suite, all I/O operations worked smoothly.

ACKNOWLEDGEMENTS
We wish to thank to Jean-Philippe Baud and

Zdenek Sekera for useful discussion and collaborative
work.

REFERENCES
[1] I. Bird, B. Hess, A. Kowalski at al. Common Storage
Resource Manager Operations
http://sdm.lbl.gov/srm-wg/doc/srm.v1.0.pdf

[2] Arie Shoshani, Alex Sim, Junmin Gu
Storage Resource Managers: Middleware Components
for Grid Storage.Lawrence Berkeley National
Laboratory Berkeley, California
http://www.lbl.gov/~arie/papers/srm.mss02.pdf

[3] Arie Shoshani, Alexander Sim, and Junmin.
STORAGE RESOURCE MANAGERS. Essential
Components for the Grid. Chapter 20. Lawrence
Berkeley National Laboratory
sdm.lbl.gov/~arie/papers/SRM.book.chapter.pdf

[4]
Jean-Philippe Baud. GFAL and LCG data management
http://hepwww.rl.ac.uk/hepix/nesc/baud.ppt

[5] The Open Science Grid Consortium, Glossary
http://www.opensciencegrid.org/home/terminology.html

[6] David Foster, Don Petravick, Michael Ernst
Grid File Access Proposal
http://www.uscms.org/sandc/reviews/doe-nsf/2003-
07/docs/GFA-Proposal-Short-v1.0.pdf

[7]Data Management Expert Panel
http://www.gridpp.ac.uk/gridpp7/gridpp7_casey.ppt

