
OpenPAW

G. Barrand, LAL, Orsay, France∗

Abstract

OpenPAW is a CERN/PAW [1] emulation done with
the OpenScientist integration principles and tools [2] [3].
OpenPAW is for people that definitively do not want to quit
the PAW command prompt, but seek anyway an implemen-
tation based over more modern technologies.

SAME SYNTAX THAN PAW

The C part of the KUIP package had been extracted
(for long) from the old CERNLIBS. It means that specific
KUIP commands like exec, shell, edit, etc... are here. The
pawcdf.cdf of the CERNLIBS, describing the PAW com-
mands, had been used so that someone has the guaran-
tee to have the same syntax than PAW. The ”only” thing
that remained to do was to reimplemente the ”callback”
C functions pahist, panntu, etc.. that does the concrete
work behing commands. This had been done by using
AIDA [4] and the OpenScientist implementation of AIDA.
Then OpenPAW could be seen as an interactive front end
to AIDA but AIDA could be seen also as the programming
API to OpenPAW. Obviously not all commands and op-
tions are yet implemented, but things are underway. See
the web page for a list of commands that received an im-
plementation. Today the CERN/PAW tutorial examples
pawex1.kumac up to pawex24.kumac are already emulated
with quite same rendering than PAW. (In fact there is the
exception of pawex19 dealing with ”tuple mask” that is not
yet here along that ”set NDVX”).

TECHNOLOGIES

The technologies are the one of the OpenScientist inte-
gration, then we shall refer to the OpenScientist CHEP’04
paper for a more detailed description of choices. To sumup
; the rendering layer is OpenGL, the scene manager is Open
Inventor, the GUI builder is OnX. The GUI is described in
XML and the OnX package is the factory that permits to
build concrete GUIs by using the toolkit of native desktop
providers (Windows, Cocoa, Motif, gtk and Qt). The de-
fault scripting used for OnX and Lab packages is the sys-
tem ”dld/C++” one, but Python can easily be plugged in.
Obviously, for the purpose of OpenPAW, KUIP had been
declared to OnX so that someone can put in its GUI XML
something like :

<widget class="PushButton">
<activate exec="kuip">

∗ barrand@lal.in2p3.fr

h/plot the_famous_10
</activate>

</widget>

PLOTTING

The plotting is done by using also OpenInventor (yes,
Inventor can be used for doing 2D !). The HEPVis SoAxis
and SoPlotter OpenInventor nodekits permit to handle a
plotting scene with axes. The XY, Lego, function, con-
tour plotting are here. The quality, especially 3D, is in gen-
eral better than CERN/PAW. For the 3D someone can easily
manipulates the scene by using the famous Inventor thumb-
wheels. For paper output, OpenPAW can produce pixmap
PostScript of an Inventor viewer but also vector PostScript
by using gl2ps. With gl2ps, files are in general big but they
are WYSIWYG which is a strong point, especially with
lego or surfaces. Note that doing remote X11 graphic is
not recommended : USE YOUR LAPTOP.

STARTUP

After installation (see web pages), someone type :

OS> opaw

to start with a PAW-like GUI (one prompt and one viewer).

OS> opaw -gui

to start with a more complete and compact GUI ”a la Pow-
erPoint”.

WHAT ABOUT COMIS ?

COMIS had been replaced by ”on the fly compilation
and loading” of FORTRAN, C, C++. It means that the full
syntax of these languages are available at full speed. The
first invocation of a source file has the overhead of compila-
tion and DLL building, but further executions are fast. For
the moment someone cannot reload a DLL without quit-
ing. This would permit to modify the code, recompile and
reload on the fly without quiting. The reloading of DLLs
passes by the mastering of the unloading of them and of the
related code ; an operation that has to be studied with care.
This is in the joblist...

SIGMA

Vector handling is done with the Lib::Vector template
class. Lib::Vector is a multidimensional vector template



done by using std::vector (then fast). The SIGMA com-
mand is done with the little Lib::Processor algebra inter-
preter. It is done with lex and yacc and aware of the
Lib::Vector ; in particular something like V1*V2 loops di-
rectly within std::vectors : fast.

FILE FORMATS

The situation here is a little bit confuse and needs some
explanation in order to understand what could be done to-
day by OpenPAW and what to use in batch programs to
produce files understood by OpenPAW.

Batch, working with AIDA

For batch programs we recommand to use the AIDA API
to create histograms and tuples, fill them and put them in
files at various formats. The file formats depend of the
AIDA implementation you use. The OpenScientist AIDA
implementation is the Lab package. In writing, Lab han-
dles today two file formats : Lab/ROOT (done by using
Rio) and AIDA/XML. OpenPAW can obviously read these
files but also other formats (see below).

Lab/ROOT

”Lab/ROOT” must be understood in the sense that the
organization of the file is the ROOT one (TKey, TDirec-
tory, TTree), but the objects put in the files are Lab ones !
In particular, by default, the Lab::Histograms (AIDA com-
plients) are not streamed like THs objects. It had not been
possible to do that because AIDA histograms are more rich
than the THs. The differences are a direct consequence
of the unability to discuss the nature of histograms with
the ROOT team in a neutral place. Note that Lab can also
stream out its histograms like THs but this has to be seen as
an ”export” mode (to jas [5] or ROOT [6]). Writing and
reading back Lab::Histograms by using THs streaming will
induce a lost of information. Note that OpenPAW can read
ROOT3 files containing THs and simple TTrees contain-
ing real numbers. This probably does not work anymore
on ROOT4 files since the basic data organizer streamers
are oftenly touched in ROOT (for example to inherit them
with some TAttFill irrelevant to the problem of IO (here
the ROOT team thinks probably that the IO of a TBranch
is more efficient if drawn with hatches...)).

Lab/ROOT and tuple writing

The Lab tuples are today written like TTree with
branches of floats. These could be read by ROOT. In prin-
ciple OpenPAW can read simple TTree exported by ROOT,
at the condition that streamers be not changed at each new
ROOT version for fancy reasons.

ROOT file, we need a standard here

The upper sections show that we need to fix the internal
organization of a ROOT file but also that we need to fix the

streaming of some basic objects like histograms and simple
tuples. Who can order that ?

AIDA/XML files

In a batch, someone can produce AIDA/XML files with
various AIDA implementations : OpenScientist, FreeHEP
(done in java) and LCG/PI [7]. In principle OpenPAW can
read these files.

Zebra files

Helas we do not have a Zebra rewritten in C or C++ !
(Which should have been done for long at CERN). But
someone can reconstruct the Zebra driver of the OpenSci-
entist/Lab package by linking the old CERNLIBS. With
that someone can read hbook files within OpenPAW. Note
that HBOOK objects will be converted to in-memory Lab
objects (including tuples !). In batch, the ex-ANAPHE or
LCG/PI AIDA implementations can produce these files.

H/FILE

The h/file OpenPAW implementation can then open all
these files :

opaw> h/file 2 my_file.root
opaw> h/plot 10
opaw> close 2

FITTING

h/fit and ve/fit received an implementation, but clearly
not with all options. Behind, the AIDA fitting interfaces
are used with, behind them, the LCG C++/Minuit dedicated
fitting package.

PERFORMANCES

The targeted machines are local desktop (Linuxes, Macs,
Windows). On these machines OpenPAW offers better per-
formances than the CERN/PAW on most aspects (in partic-
ular graphic).

WHY OPEN ?

OpenPAW is open for various reasons. The first one is
that it is ”spiritualy open” in the sense that we try to follow
the OpenScientist strategy of ”integrating dedicated open
source code done elsewhere”. Another one is that the ar-
chitecture and the code attempts to be very modular. This
is done by using pure abstract interfaces to do the coupling
between domains (GUI, scene manager, scripting, storage).
We remember that a pure abstract interface permits to es-
tabish a relationship between two classes without the need
to link the ”using class” library against a specific imple-
mentation of the ”used class”. The relatioship is done at
compilation time and at run time only (through dynamic



loading of a DLL doing an implementation of the inter-
face). Right now we can handle various GUIs, scripting
(KUIP, Python), and storage (Rio, AIDA-XML) in a clean
way. The packaging of OpenPAW is also open because
someone can pickup most of the ”facilities” without having
to embarque connection to irrelevant things (storage with-
out the graphic, etc...). It is also open to user in the sense
that someone can strongly customize a lot in a simple way
without having to touch everything. And at last, but not the
least, it is open because all the code is open source.

CONCLUSIONS

We had presented the first ”serious” release of Open-
PAW. It contains sufficient material to work. It demon-
strates also that we can offer a continuity to physicists at the
same time that, behind the scene, software engineers have
the freedom to move toward new technologies. It is clear
that not all what was available in CERN/PAW is yet recov-
ered but on numerous points someone has already much
more.

REFERENCES

[1] http://wwwasd.web.cern.ch/wwwasd/paw

[2] http://www.lal.in2p3.fr/OpenScientist.

[3] CHEP’04 OpenScientist paper.

[4] http://aida.freehep.org

[5] http://jas.freehep.org

[6] http://root.cern.ch

[7] http://lcgapp.cern.ch/project/pi


