
Antonio Ceseracciu

(for the BaBar computing group)

SLAC

The evolution of the distributed Event
Reconstruction Control System in BaBar

CHEP 2004, Interlaken
CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.1/17

BaBar Data Reconstruction

Prompt Reconstruction (PR)
performs Calibration and Event Reconstruction from raw data
coming from the detector, using ∼ 400 CPUs

consists of a set of tools i.e. executable programs

executable programs contain “physics” code

PR Control System
presented in CHEP’03: The new BaBar Data Reconstruction
Control System

manages production of Calibration and Event data

runs the PR tools as black boxes

provides a high level user interface to the system

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.2/17

Control System Evolution

This talk will focus on the Evolution of the Control
System.

One original design requirement of the BaBar Control System
concerned its evolution: flexibility.

This talk will discuss how designing for flexibility affected the
actual evolution of the system.

The most effective solutions will be highlighted.

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.3/17

Defining flexibility

Flexibility: the quality of being adaptable, or, evolve
a metric for flexibility can be derived by looking at the overhead
in run-time performance and development time introduced by
increase in complexity

a basic metric for sheer complexity in software is the number of
lines of code (LOC)

e.g.: in an ideal flexible system, the effort required for adding a
new feature or fixing a bug is constant regardless of the
complexity

e.g.: common experience tells that it is more difficult to debug a
1,000 lines program than a 10 lines one!

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.4/17

The requirement of flexibility

Flexibility was a main requirement for the Control
System:

complexity: it is a distributed system

evolution in time: changes in the processing model, and in the
environment

evolution in space: the same system must run in different
infrastructures

human interface: ordinary maintenance must be handled at
configuration level, not require interaction with developers

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.5/17

Designing for flexibility

Design features concerning flexibility:
modularity: code components rather than applications

protocols: explicit modeling of interaction between components

configuration system: assemble components into entities and
complete systems

abstractions: identify and express fundamental patterns

anticipation: future development paths are part of the initial
requirements.

The next slides discuss the implementation choices for each of
these features.

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.6/17

Modularity

Light Processing Framework (LPF)
Everything in the Control System runs inside an
LPF

In other words, everything is coded as LPF
modules

Light: delegates any task to core modules

LPF provides:
Message passing engine

Cooperative multitasking

Static module loading

LPF

MpxServer

MsgClient

ModuleActivator

CronService

SysHandler

Configuration

FSM Framework

...any Module

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.7/17

Protocols

In a modular system, interaction between modules can be more
complex than the internal logic of the modules themselves

Explicit definition of protocols and interfaces is a good way to
capture this complexity

e.g. the diagram below shows the protocol for a subsystem.

MonitoringObjectMonitorServer CronServerClient

Register

Poll

Poll

Poll

UpdateValue

UpdateValue

UpdateValue

GetValues

AnswerGetValues

PR Monitoring Protocol

Start

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.8/17

Configuration System

In a dynamic modular system, the configuration engine is
responsible for assembling the system together:

assemble components into entities, or agents

assemble agents into a distributed system

The configuration information includes all the needed information
for activating (booting) the system

The system is described as a hierarchical tree of services

XML language proved fit to this task, being inherently hierarchical

This all adds to the common “good programming” practices:
nothing is hardcoded; orthogonal configuration spaces for different
modules

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.9/17

Abstractions

Identifying patterns and providing abstract models
for them is fundamental in software design.

Good abstractions allow us to express evolutionary pressure
into extensions, or components, and new policies to combine
them, not into modifications to the existing code and
infrastructure.

The main high level abstraction in the CS is the Finite State
Machine (FSM) processing model

processing is split in sequences of steps, or states.

the FSM definition, coded in a custom language, connects each state’s jump
labels to another state, thus defining the processing model.

the FSM is also the main interaction point for the user interface.

the FSM description is the policy, the states’ implementation the mechanism.

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.10/17

Evolution: maintenance

Ordinary maintenance
Policy changes, e.g. adding or removing a check: typically
implemented by changing the FSM description.

Adding new user commands: complete separation of user
interface code from the application code, interfacing via regular
message passing.

Supporting changes in the infrastructure: adding dedicated
modules.

Major maintenance
Paradigm shift in the processing model: forking the FSM
description to remove or add states, and coding new states.

Deploying the system in a different infrastructure: adapting the
configuration.

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.11/17

Evolution: CM2 requirements

The Computing Model 2 upgrade:
During the year 2003, BaBar deployed a new computing model,
called CM2.

See presentation “The new BaBar Analysis Computing Model”

New requirements for the data production system:
While efficient for physics analysis purposes and in reducing
the latency to make the data available, CM2 imposed additional
requirements to the control system

Responsibility for data files management passed from the
DBMS to the Control System, increasing its complexity

An additional time consuming post processing step is required
to assemble the final data collections

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.12/17

Evolution: upgrade

The Control System under evolutionary pressure
Forking the FSMs definition to create a new processing model
and accomodate the new states needed

Addition of a PostProcessing stage
Independent system, described by a dedicated FSM
Filesystem interface: it is coupled to the main processing
system by a simple filesystem interface.
Scaling: any number of PostProcessing FSMs can be
statically coupled to a processing farm

The main upgrade was implemented quickly, and allowed basic
production on time with the availability of the event store tools.

Later development effort was concerned mostly with improved
checking and recovery of error conditions.

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.13/17

Evolution: codebase

LOC

03/2002 Months09/2002 11/2002 03/2003

Dev
Application

Production

Development

Core

Stable

CM2 Dev

06/2003 03/2004

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30

OprProcessingSys (APP):
OprControlSys (CORE):

During the
project, the
allocated FTE
decreased
steadily from
initial 3.0 to a final
0.5.

The number of lines of code (LOC) in the two packages (Core and Application) of the code
repository, as a basic metric for complexity. The plot reflects the different development
phases.CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.14/17

Considerations: shortcomings

Some design choices would have probably been
different if designed now.

Tcp/Ip interface: the CS uses a custom protocol and implementation. An
alternate approach could be a XML based interface, with SOAP message
passing. This would also make it easy to enable a GRID interface to parts of
the system.

Programming language: the system was programmed in OO perl. While the
dynamic typed nature of perl has been essentially useful, some discipline and
conventions were needed to keep the code base maintainable. A language like
python would be a sensible alternative.

Overdesign: parts of the system were designed with too generic purposes, and

then not used or not fully exploited. This happens naturally whenever the

requirements must be discovered or refined during the development, though.

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.15/17

Summary and comments

The experience with the BaBar reconstruction
Control System displays how a careful design can
grant qualities to a software system.

In this talk, we often pictured the system as self-evolving, to
analyze its behavior. That is of course not the case.

Any stage of a system’s maintenance require thoughtful
decisions, to maintain consistency with the design.

Higher level design patterns offer a guidance to those
decisions. They won’t make the system immune to later bad
design or bad coding.

The solutions discussed in this talk contributed
substantially to implement a flexible and
maintainable system.

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.16/17

Who

Main developers

Antonio Ceseracciu

Martino Piemontese

Francesco Safai Tehrani

Co-developers and testers

Peter Elmer

Doug Johnson

Teela Marie Pulliam

Fulvio Galeazzi

Helpers and Users

Sridhara Dasu

Adil Hasan

Doug Johnson

Olga Igonkina

Christian Flacco

...to name a few. Thanks!

CHEP 2004 - Antonio Ceseracciu - The evolution of the distributed Event Reconstruction Control System in BaBar – p.17/17

	
	 BaBar Data Reconstruction
	 Control System Evolution
	Defining flexibility
	The requirement of flexibility
	Designing for flexibility
	Modularity
	Protocols
	Configuration System
	Abstractions
	Evolution: maintenance
	Evolution: CM2 requirements
	Evolution: upgrade
	Evolution: codebase
	Considerations: shortcomings
	Summary and comments
	Who

