CHEP'04

INTERLAKEN

Experiments frequently produce many small data files for rea-
sons beyond their control, such as output splitting into physics
data streams, parallel processing on large farms, database tech-
nology incapable of concurrent writes into a single file, and con-
straints from running farms reliably. Resulting data file size is
often far from ideal for network transfer and mass storage per-
formance. Provided that time to analysis does not significantly
deteriorate, files arriving from a farm could easily be merged into
larger logical chunks, for example by physics stream and file
type within a configurable time and size window.

Uncompressed zip archives seem an attractive candidate for
such file merging and are currently tested by the CMS experi-
ment. We describe the main components now in use: the merg-
ing tools, tools to read and write zip files directly from C++, plug-
ins to the database system, mass-storage access optimisation,
consistent handling of application and replica metadata, and
integration with catalogues and other grid tools. We report on
the file size ratio obtained in the CMS 2004 data challenge and
observations and analysis on changes to data access as well as
estimated impact on network usage.

LHC data files meet mass storage and networks:

going after the lost performance

Tim Barrass,T Vincenzo lnnocente,i Lassi A. Tuura® (on behalf of CMS collaboration)

TBristol University, UK *CERN, Switzerland SNortheastern University, Boston, USA

Problem statement

Typically high-energy physics data processing applications produce lots
of files whose sizes are far from ideal when it comes to network transfers,
mass storage systems and even read throughput for analysis programs.
For reasons beyond the experiments control it is not reasonable to
assume this imbalance will change soon. The median file size of 560 kB
seen in the CMS DCO04 data challenge in spring 2004 will remain more
typical than the desired 1.5-2 GB. The processing of large input data
samples need to be split into many jobs that run on grid farms. It would
make sense to merge their output files to natural larger logical chunks
provided that time to analysis does not significantly increase.

A number of merging options are available. In practise the cost of merg-
ing is lower if the files are merged without touching their contents or
changing their catalogue identity. Not touching the contents also avoids
violating the file immutablity assumptions made by grid tools and allows
the merging to be done in any stage of the data management system. In
short, a flexible and optional knob for tuning network and mass storage
performance without interference to the core frameworks is desirable.

Strategy

CMS is experimenting with uncompressed zip archives for file merging.
We store the original data files unmodified and uncompressed in a zip
archive, effectively providing random-access byte-range inside the larger
container archive. Data files are accessed through an abstraction library
as seekable stroage objects with POSIX-like file semantics. Normal local

files are an obvious storage default, but we also provide plug-ins for
accessing files directly from the mass storage systems (Castor, dCache)
and with standard network protocols (http, ftp, gsiftp, sfn). Any of these
may be combined recursively with direct access to the members of zip
archives, effectively serving byte ranges of larger files as virtual smaller
files. This allows us to fool our database libraries (POOL, ROOT) into
believing that they are reading normal files when they are in fact getting
members of zip archives directly from a mass storage system there is

no need to extract the members from the archive before accessing them.

Files are registered into catalogues using special URL syntax, co-operat-
ing with existing conventions and tools; as far as the rest of the system is
concerned, the original files have not changed identity, they merely hap-
pens to have unusual physical file name URLs. An added advantage is
that the number of connections to the mass storage system can be
reduced substantially by opening the archive only once and sharing the
connection for all the members.

Our solution also includes the file merging tools: they either process files
directly from a grid farm before passing them on to the data transfer sys-
tem, or in a separate step to recluster the data. The merging allows for
different queuing policies and strategies for different types of data.

Workflow and deployment

Our C++ utilities to read and write zip archives have existed for a while.
The adaptors to expose members of zip archives as database files were
introduced in late 2003 and early 2004. For the DC04 data challenge we
introduced tools to evaluate the effectiveness of the merging to help us

Compact Muon Solenoid

decide whether the technology is worth pursuing further and to estimate
the advantages that we might gain. Our results are presented below.

References

CMS Software http://cmsdoc.cern.ch/cmsoo/cmsoo.html
PhEDEXx http://cern.ch/cms-project-phedex/

LCG SEAL project http://seal.cern.ch/

LCG POOL project http://pool.cern.ch/

ROOT http://root.cern.ch/
http://www.pkware.com/company/standards/
http://www.info-zip.org/

Zip file format
Info-Zip tools

merging

PhEDEX file transfer injection chain

The CMS PhEDEX project supplies an agent-based data movement sys-
tem. Each agent performs a single well-specified task. A fraction of the
agents are designed to be site-local, performing pre-processing tasks on
data or meta-data before it is injected into the transfer system. We call
such programs drop box agents because they receive task drops from
upstream through an incoming mailbox directory. Each drop box agent
does its transformation work on the drops before passing them to the
inbox of the next agent. The last agent of the chain destroys the drops.
For CMS each drop holds the information about the output of a single
simulation or reconstruction job; the drops may be produced genuinely in
real-time by a farm, or they can be generated from other sources such as
the CMS RefDB production tracking database. More details about the
agent workflow are given in a separate topic below.

File merging agent

The file merging agent is a drop box agent that receives the job output
from upstream clean-up agents. It runs a master and number of parallel
workers. The master manages the file queues and sends expired queues
for the least-loaded worker process. The worker downloads the files from
the mass storage system, creates the zip archive and generates new cat-
alogue stub, and passes the result to downstream agents, which publish
the merged file for transfer.

Master: queue management

The master agent examines the files produced by a job and places them
into appropriate queues based on the file meta data attributes. When a
queue expires, the master collects the files assigned to the queue and
passes the information to the least-loaded worker agent for merging. The
master is also able to prefetch files from the mass storage while idle to
increase the overall system throughput.

There are no predefined queues. Instead queues are defined dynami-
cally by the file meta data attributes. We used the attribute tuples (data-
set, owner, stream, file category, file type) to define queues. Each
queue has a configurable age and size limit. If either one expires, the
queue is flushed. We used 1.5 GB and 30 minute limits for all queues.
By customising the limits an experiment can apply a merging policy and
transfer expediency class by the type of the contents of the files, for
instance by physics streams. Queues may be linked such that if one of
them expires, all the linked queues expire simultaneously. This is helpful
to ensure that zip archives for related file types always include the output
from exactly the same set of jobs.

Because the queues are dynamically defined, the merging efficiency
depends on the data mixture received by the agent. When a farm runs
jobs for a mixture of datasets and the queue age limits are low compared
to the output rates, files for different datasets are likely to get intermin-
gled, leading to limited merging efficiency. On the other hand, if data is
injected offline for entire datasets at once, thousands of files may get
merged together.

Workers: zip creation

A worker agent takes the queue specification sent by the master, down-
loads from the mass storage all the files not yet prefetched by the master,
creates the zip archive and feeds it to next downstream agent. A config-
urable number of workers run in parallel. Each one does copies from the
mass storage with a configurable number of parallel processes. In DC04
we used five parallel workers, each issueing up to five parallel file copies.

Meta-data preservation and distribution

We chose to fully preserve the identity of the files. The zip archives
are invisible to much of the system. Archive members are registered indi-
vidually into the file catalogues with complete meta data details. The only
thing special about them are the physical file name URLs (see right). The
worker agents generate a catalogue template that contains both an entry
for the archive itself and copies of the entries for all the members. As the
archives are transferred by the data movement system, the file transfer
agents add replica information for both the zip archive and all the mem-
bers; the archives are specially flagged so the agents know to perform the
additional processing. The template catalogue is stored in the zip archive
along with a simple template file list to simplify the registration process;
the transfer agents substitute the local archive path in one of the two tem-
plates and register the replicas to the destination catalogue.

workflow

|' Ixgate04
r P | ropBoxes
' Worker Node

suncmsf

Zipping
Publish To (g
Catalogue

Publish To
Transfer

The figure above illustrates the file merging workflow in the CMS DC04
data challenge. The CERN Tier-O farm processed events at roughly 25
Hz, translating to approximately 250 MB in 19 files every 40 seconds.
After writing the files to the Castor mass storage system, the job copied
the necessary information to the transfer chain drop boxes, from where
the files were published for transfer and distributed to the regional cen-
tres. The default file transfer mode was to simply publish the information
in the file catalogues and make it available for transfer.

For the file merging test path the same files were also fed to the merging
system on a different computer. The merging system maintained the
queues for incoming files, merged files in the expired queues, put the
resulting zip archives back to the mass storage and then fed the archives
back to the data transfer chain with updated catalogue information. The
archives were collected and held until the end of the data challenge, at
which point they were injected into the transfer chain in one go as a trans-
fer performance test. This resulted in sustained transfer rate from CERN
to two Tier-1s of approximately 70 MB/s.

The final part of the workflow, not illustrated on this diagram, is the use of
the data files in further analysis jobs. See the more detailed explanation
on file access above right.

Queued Files Merged Archive

Catalogue Stub

Checksum File

TStorageFactoryFile

(—\;;Open("sfn:...")

POOL
Storage
Service

Storage
Factory

ROOT
File COBRA
StorageFactory Access
zinstance("sfn") TFile:Open("sfn:...")
->open("sfn:...")

% Merged Archive

<File ID="24C1EB40-3089-D811-96A3-0002B3D8C2BE">
<physical>
<pfnl.] name:"lzip-member:

[..]/ZippedEVD.DST..].zip | » LA

7
</physical> T TTTTTTTTTTTTROS Directory

<logical>
<Ifn name="EVD12_DST.49e247e6892e11d896a30002b3d8c2be.
74500005.L1DiMu.DSTs801_5_CMS-C-mu03_W1mu"/>
</logical> [..]
</File>

Table 1: DC04 replay file size statistics: maximum possible merging

e\ptr»deref()

of files Total size | Minimum file size | Maximum file size | Average file size Median file size
Replay input 278483 3411 GB 21 kB 268 MB 13 MB 866 kB
Merged zips 4486 3411 GB 41 kB 1744 MB 779 MB 146 MB
Change [62] x 2.0 x 6.5 x 60 x 174

Max Replay File Size Profile Before Merging

1'000'000 1'000'000 1'000

Max Replay File Size Profile For Zips

Max Replay Members Per Zip

100'000 A

r 100000

10°000 4

1'o00 4 - 1004

Mumber Of Files
Total Size (MB)
Mumber Of Files

100 4

1'000'000 10000

T 100'000

r 10'000 B

r 100 10 4--edeefippeeeneans

r 10°'000

1000 T]

0 50 100 150 200 250 300 0
Size Bin (MB)

Size Bin (MB)

E w
“. M |r\ g g ﬁ &
| =
|HI { IMJDIJI"M\/VLJ\r l'l 1 1aoo :g T 100 g - g oo o
. V in 5 ¢ .
[a:] =
: S Pesges ©
------------------------------------- 100 g@ LAY &
o ¢ @ o
0 e -e--- T -
& é & o $
L L $<> & &
r 1o T+ 10 4 <X<>>0<><> oy GO & <<>>
G RN € KNS RS ¢ ¢ O e @ ©
1 1 mm “ 1 1 i L
500 1'000 2000 0 100 200 300 400 500

Mumber of Members

Table 2: DC04 file size statistics

of files Total size | Minimum file size | Maximum file size | Average file size Median file size
Before merging 560589 6380 GB 21 kB 412 MB 12 MB 570 kB
Merged zips 3683 866 GB 43 kB 1608 MB 241 MB 32 MB
Combined 564272 7246 GB 21 kB 1608 MB 13 MB 582 kB

DC04 File Size Profile Before Merging

DC04 File Size Profile For Zips

Members during 27.4.-1.5.

1'000'000 10°000'000 10000

1 1anonac
100'000 1'000'000

1'000 4
<+ 100'000

10000 4----
+ 10'000
1'o00 4 100 o - -

T 1'000

Mumber Of Files
Total Size (MB)
Mumber Of Files

100 4

10 A

1'000'000 500

T 100'000

-+ 10'000

- 1'000

Total Size (MB)
Zip archives

] 50 100 150 200 250 300 350 400 450 o 200 400

Size Bin (MB)

00 8O0 1000 1200
Size Bin (MB)

1600 1800 0 10 20 30 40 50

Number of Members

Size vs.Members Size vs.Age
&0 7000
" PO o O o o o o &000
g & o o 8
° 5000
= 4 §6 Agent catching up after stoppage & &
S (6 mins, 56 archives)
z ? b o 2 4000
o &
: y | o
o @
2 = 3000
g 20
=
2000
° ° 1&9»&<> o ¢ e oo o o
m O o a
0 o O u} o L 1000 g &
O o o
oo a B & &
07 T T T T T T 0 T T T T T T T T
0 200 400 600 80D 1000 1400 1600 1800 0 200 400 600 80D 1000 1200 1400 1600

requirements

Data access overhead through the plug-ins seems to be negligible. We
have not been able to measure any cost for the intermediate storage
abstraction layers. On the other hand, our plug-ins caches connections
by opening each archive only once per thread, leading to much fewer file
opens to the mass storage systems. When relatively small amounts of
data are read from many archive members, as summary data processing
normally does, the performance advantage seems to be significant.

File merging is resource intensive even when the data itself is not
touched and the files are simply merged into an uncompressed archive.
A moderate level of CPU capacity is required to CRC-32 checksum the
Zip archive contents, however the main requirement is for substantial I/O
bandwidth. Simultaneously balancing large network and disk reads and
writes is particularly important. We tested four different systems until the
capacity was sufficient for CMS DCO04: three Linux configurations were
rejected before we finally settled on a Sun Solaris system.

The first Linux system we tested had neither sufficient disk capacity, nor
the 1/O performance, nor the CPU performance to keep up with the
incoming data (5-6 MB/s on average). The second system was otherwise
identically equipped except for sufficient disk capacity. While the hard-
ware (2 x 1 GHz Pentium Ill, 512 MB memory, 20 GB/7200 rpm EIDE
drive) seemed adequate, the kernel appeared unable to feed enough
data at the same time to and from the local disks. It appeared that the
merging processes were read starved and the disks were simply trashing.
We tested a third Linux configuration with RAID drives to verify this
hypothesis, and indeed the I/O performance improved, but not enough.
In appears that Linux 2.4 kernels do not seem to handle well several proc-
esses concurrently streaming O(1.5 GB) of data into and out of the disks.
We finally settled on a 2-CPU Sun with SAN (RAID) disks. The machine
had sufficient CPU, network and 1/0O bandwidth to keep up with the incom-
ing data rate and to even recover from processing backlogs.

It is evident from our experience that it is important to deploy sufficiently
capable hardware and operating system for the merging system.

Archive Size (MB)

Archive Size (MB)

results

Statistics

Table 2 above presents the file merging statistics from the CMS DC04.
Merging ran for a few days at the end of the challenge, not all the data
challenge data was merged. Still, this sample presents a rather signifi-
cant increase in the file size: the average file size increased by a factor of
20, and more importantly, the median file size increased by nearly a factor
of 60. More detailed plots of the file size profile before and for the zip
archives are shown below the tables.

At the end of the of the data challenge all the zip archives were released
into transfer to see the impact on transfer performance. As can be seen
from the plots below (courtesy of Jos Hern ndez, CIEMAT), the transfer
rates from CERN to PIC increased substantially for several hours, up to
four-fold sustained rate to about 30 MB/s.

1cgse02. ifae.es Netvwork last week Tcgse02.ifae.es Network Tast d

T s F AW T -

10 M

Y

Eytes fsec

wed Fri sun
E1n W out & In

1cgsend.ifae.es Network last week
40 M T

20 M k

Bytes/sec

Wed Fri sun

Data challenge replayed

PhEDEXx also includes a replay infrastructure which allows us to perform
what-if analysis, to test different algorithms, and make performance
stress tests. We ran about half of the DC04 data through fake merging
process to see what the maximum possible merging ratio would be.
Results and statistics plots are shown in Table 1 above the DC04 results.

file access

The file access process is illustrated by the diagram on the left.

Storage factory

CMS has contributed to the LCG SEAL project C++ classes to read and
write zip archives. In the end of 2003 and early 2004 we used them and
the SEAL plug-in manager to implement a modular, plug-in based storage
factory. The factory provides a simple interface to open and check the
existence of files by URL. The factory uses the URL protocol to deter-
mine which plug-in is able to access the file and forwards the operations
to the plug-in. Opening a file returns a pointer to a SEAL Storage object,
an abstraction of seekable file-like objects.

Storage object plug-ins

Each storage factory plug-in is responsible for handling file operations for
the protocols it is registered for. In several cases this translates to return-
ing an instance of a suitable Storage class, such as File or RFIOFile. If
there is no way to access the file directly remotely, as is the case with
FTP for instance, the remote file is first downloaded to a local a temporary
directory, and the plug-in returns a reference to the temporary file.

Some but not all protocols also support writing and creation of files. Itis
possible to write directly to both dCache and Castor, which provides an
attractive means to write log files and other large output files directly into
the mass storage without having to store a copy on the worker node first.

Zip member plug-in

The zip-member storage plug-in is slightly special in that it first opens the
archive by recursing back to the storage factory, then locates the
requested member by name (a zip archive contains an index directory at
the end), and then returns a sub-storage object for the byte range occu-
pied by the member. Only stored, uncompressed members are sup-
ported as seeking in compressed data would be complicated, and in any
case normally the data stored in the files is already compressed.

Since the zip member protocol supports only reading, each archive is
opened only once in each thread. This produces a substantial savings in
the number of file descriptors used and in the number of connections
made to the mass storage servers.

ROOT adaptor

We also provide a plug-in to ROOT that redirects operations on ROOT s
TFile to our storage factory objects. This allowed us to deploy our
changes immediately without touching any of the database code in POOL
or ROOT. We can also optionally hijack the URL resolution mechanism in
ROOT to stop it from using it s internal plug-ins for accessing different
storage systems, e.g. RFIO or dCache.

Catalogue URL syntax

The files are registered to a catalogue using the standard physical file
name URL syntax. The protocol prefix is used to select the appropriate
storage factory plug-in. Any of the following supported protocols can be
used for file access:

* file: for direct local file access (operating system interface)

» ftp: for downloading files with FTP (using curl)

e http: or web: for downloading files with HTTP (using curl)

e gsiftp: or sfn: for downloading files with GridFTP (w/globus-url-copy)

 rfio: for direct file access with RFIO (aka Castor, no download)

* dcap: for direct file access with dCache (no download)

e zip-member:archive#member for direct access to a zip member; the
archive part is resolved again through the storage factory mechanism,
so it is possible to use for instance zip-member:rfio:/path/to/
a.zip#member

...anhd more

Code availability

Several parties have expressed interest in this techology and CMS is in
the process of making it more accessible. The C++ classes to read and
write zip archives have been available through the LCG SEAL project for
some time already. The storage factory plug-in interface and the modules
to access different storage technologies through a simple file-like abstrac-
tion are also being made available through the SEAL project. The ROOT
plug-ins will most likely be made more generally available through the
LCG POOL project.

The file merging tools are available via CMS PhEDEX, a distributed data
movement service project. There is little special about the tools, anyone
can merge files into zip archives with any zip-standard compliant tool,
including the popular Info-Zip command line tools zip and unzip available
on many systems. The PhEDEX tools will too work on just about any unix-
like system.

The ROOT developers considered the zip read/write techology sufficiently
useful that they copied most of the plug-ins and zip file access code
whole sale into their project and released it in a recent ROOT 4 version.
Their implementation does not use the LCG SEAL libraries, it has a sepa-
rate copy of the code.

Further studies

CMS is evaluating this technology further. We are improving the perform-
ance of the merging tools and making further simulations on the impact of
the parameters on the file size, network transfer, mass storage and analy-
sis performance. We are writing a guide on hardware configurations,
deploying the merging service in grid environments and data movement
in general. We will also investigate in more detail the feasibility of using
the same technology directly in CMS online farms.

	LHC data files meet mass storage and networks: going after the lost performance
	Problem statement
	Strategy
	Workflow and deployment
	References
	Table 1: DC04 replay file size statistics: maximum possible merging

	merging
	PhEDEx file transfer injection chain
	File merging agent
	Master: queue management
	Workers: zip creation
	Meta-data preservation and distribution

	file access
	Storage factory
	Storage object plug-ins
	Zip member plug-in
	ROOT adaptor
	Catalogue URL syntax

	workflow
	requirements
	results
	Statistics
	Data challenge replayed

	...and more
	Code availability
	Further studies
	Table 2: DC04 file size statistics

