
LHC data files meet mass storage and networks:
going after the lost performance

T. Barrass, University of Bristol, UK (tim.barrass@physics.org)
V. Innocente, CERN, Geneva, Switzerland (vincenzo.innocente@cern.ch)

L. A. Tuura, Northeastern University, Boston, MA, USA (lassi.tuura@cern.ch)
Abstract

Experiments frequently produce many small data files
for reasons beyond their control, such as output split-
ting into physics data streams, parallel processing on large
farms, database technology incapable of concurrent writes
into a single file, and constraints from running farms re-
liably. Resulting data file size is often far from ideal for
network transfer and mass storage performance. Provided
that time to analysis does not significantly deteriorate, files
arriving from a farm could easily be merged into larger log-
ical chunks, for example by physics stream and file type
within a configurable time and size window.

Uncompressed zip archives seem an attractive candidate
for such file merging and are currently tested by the CMS
experiment. We describe the main components now in use:
the merging tools, tools to read and write zip files directly
from C++, plug-ins to the database system, mass-storage
access optimisation, consistent handling of application and
replica metadata, and integration with catalogues and other
grid tools. We report on the file size ratio obtained in the
CMS 2004 data challenge and observations and analysis
on changes to data access as well as estimated impact on
network usage.

OVERVIEW

Motivation

Typically high-energy physics applications produce files
whose sizes are far from ideal for network transfers, mass
storage systems and even read throughput for analysis pro-
grams. The median output file size of 570 kB seen in the
CMS DC04 data challenge in spring 2004 [1, 2, 3] is, while
something that can be improved on, unlikely to grow to the
desired 1.5-2 GB.

The reasons for the small file size include splitting the
processing of large input samples into many jobs for ef-
ficient use of computing farms, limited amount of output
produced by a single job, and the fact that each job pro-
duces new output files. For reasons beyond direct experi-
ment control this is unlikely to change soon. However the
output from different jobs could naturally be merged back
to a larger logical “stream” provided the time to analysis
does not significantly increase.

A number of merging options are available. In practise
merging is cheaper if the file contents or identity does not
change. Not touching the contents also avoids violating
the file immutability assumptions made by grid tools and
allows the merging to be done in any stage of the data man-

agement system. A flexible and optional knob for tuning
network and mass storage performance without interfer-
ence to the core frameworks is desirable.

Large files may also cause inconvenience so the benefits
should be carefully weighted. Some studies seem to indi-
cate that certain file systems may behave poorly if several
large files are simultaneously written to on the same file
system. Merging may also complicate use and tracking of
meta data.

Candidate Solution

CMS [4] is experimenting with uncompressed zip
archives [11] for file merging. We store the original
files unmodifiedand uncompressedin a zip archive. Zip
archives include an easily accessible table of contents at
the end and store the members in a single contiguous byte
range. This forms the basis of serving the original files
transparently as files within files.

Our software accesses data files through a library that
serves storage objects with POSIX-like file semantics [7].
A number of plug-ins extend the base abstract interface:
normal files, direct access to a mass storage (Castor,
dCache), and the standard network protocols (http, ftp,
gsiftp, sfn), and zip members. Any method can recursively
be used with zip member access, including zips within zips.

Merged files are registered into catalogues using
standard-conforming new URL protocol, co-operating with
existing conventions and tools. As far as the rest of the
system is concerned, the original files remain distinct and
retain their identity and meta data attributes.

The file merging tools are used to either process files di-
rectly from a data processing farm before passing them on
to the data transfer system, or in a separate step to recluster
the data. The merging allows for different queuing policies
and strategies for different types of data.

FILE MERGING

PhEDEx is a distributed agent-based data movement sys-
tem [5]. Each agent performs a single well-specified task.
Some of the agents are site-local, preprocessing data or
meta-data before it is injected into the transfer system. We
call such programs “drop box” agents because they receive
task drops from upstream through an incoming “mailbox”
directory. For CMS each drop carries information about the
output of a single job; the drops can be received in real-time
from a farm, or they can be generated for instance from the
CMS RefDB production tracking database [6].

The file merging is done by a drop box agent after the job
output is cleaned up. It runs a master and number of paral-
lel workers. The master agent examines the files produced
by a job and places them into appropriate queues based on
the file meta data attributes. When a queue expires, the
master collects the files assigned to the queue and passes
the information to the least-loaded worker agent for merg-
ing. The master can also prefetch files from the mass stor-
age while idle to increase the overall system throughput.

Queues are defined dynamically by a tuple of file at-
tributes; we used(dataset, owner, stream, file category, file
type). Each queue has a configurable age and size limit,
allowing merging policy and transfer expediency to be de-
fined. A queue is flushed when either limit expires; we
used 1.5 GB and 30 minute limits for all queues and forced
related queues to flush simultaneously to ensure that zip
archives for related file types always included the output
from the same set of jobs.

Each worker agent takes the queue specification sent by
the master, downloads from the mass storage all the files
not yet prefetched by the master, creates the zip archive and
feeds it to next downstream agent. A configurable number
of workers run in parallel, and each of them copies files
from the mass storage with a configurable number of par-
allel processes. We used five parallel workers each making
five parallel mass storage file copies.

To preserve the identity of the files the worker agents
generate an XML catalogue template with entries for the
archive and each member. The file transfer agents add a
replica for both the zip archive and all the members when
detecting a transfer of a zip archive for merged files. The
catalogue template is stored in the zip archive along with
a simple file list template to simplify the registration: the
transfer agents substitute the local path for the archive in
one of the templates and register the replicas to the desti-
nation catalogue.

FILE ACCESS

Accessing files is illustrated by Figure 1. The file-
within-file approach allows us to fool our database libraries
(POOL [9], ROOT [10]) into believing that they are reading
normal local files when they are in fact accessing members
of zip archives directly from a mass storage system. There
is no need to make local copies of the archives or to extract
the archive members.

We implemented an extensible storage factory using the
LCG SEAL project [8] C++ classes to read and write zip
archives and the SEAL plug-in manager. The factory pro-
vides a simple interface to open and check the existence of
URLs, using the URL protocol to select the plug-in that can
handle the operations. Opening a file returns a pointer to a
SEAL Storage object, an abstraction of seekable file-like
objects with POSIX-like interface.

Each storage factory plug-in provides protocol-specific
means to open and check the existence of files. Opening
translates to returning an instance of a suitableStorage

<File ID="24C1EB40-3089-D811-96A3-0002B3D8C2BE">

<physical>

<pfn [...] name="zip-member:

sfn://castorgrid.cern.ch/

[...]/ZippedEVD.DST.[...].zip

#EVD12_DST.49e247e6892[...]"/>

</physical>

<logical>

<lfn name="EVD12_DST.49e247e6892e11d896a30002b3d8c2be.

74500005.L1DiMu.DSTs801_5_CMS-C-mu03_W1mu"/>

</logical> [...]

</File>

http

ftp
sfn Merged Archive

Directory

Storage

Factory

POOL

Storage

Service

COBRA

ROOT

File

Access

ptr->deref()

TFile::Open("sfn:...")

TStorageFactoryFile

::Open("sfn:...")

StorageFactory

::instance("sfn")

->open("sfn:...")

Figure 1: File access.

class, such asFile or RFIOFile. When a remote file can-
not be operated on directly, it is downloaded to a local a
temporary directory and a reference to the temporary local
file is returned. This is the case for FTP for instance.

Some but not all protocols support creation and writing
of files. It is possible to write directly to both dCache and
Castor, providing a means to write log files and other large
output files directly into the mass storage without having to
store a copy on the worker node.

The zip-member plug-in splits the URL into archive and
member parts, opens the archive using the storage factory,
locates the requested member using the archive table of
contents, and returns a storage object for the member’s
byte range. Only uncompressed members are supported to
avoid seeking in compressed data—the actual data is nor-
mally compressed anyway. Since only reading is possible
through the interface, archives are opened once per thread.
This reduces the number of file descriptors used and con-
nections made to the mass storage servers.

A ROOT plug-in redirects ROOT’sTFile operations to
the storage factory, rendering changes to POOL or ROOT
unnecessary. We optionally hijack ROOT’s URL resolution
mechanism to disable its internal access methods for non-
local files.

The following URL protocols are handled:

• file: local files
• ftp, http andweb: download files with withcurl
• gsiftp and sfn: download files with
globus-url-copy

• rfio: direct RFIO access, no download
• dcap: direct dCache access, no download
• zip-member:archive#member: direct access to

a zip member; the archive part is resolved
through the storage factory, allowing for instance
zip-member:rfio:/path/to/a.zip#member

WORKFLOW

In CMS DC04 the CERN Tier-0 farm processed events at
up to 25 Hz, peaking at approximately 250 MB in 19 files
every 40 seconds. After copying the output files to Cas-
tor, the job created a drop at the transfer chain entry, from

Table 1: DC04 file size statistics
of files Total Minimum Maximum Average Median

Before merging 560589 6380 GB 21 kB 412 MB 12 MB 570 kB
Merged zips 3683 866 GB 43 kB 1608 MB 241 MB 32 MB
Combined 564272 7246 GB 21 kB 1608 MB 13 MB 582 kB

Table 2: DC04 replay file size statistics: maximum possible merging
of files Total Minimum Maximum Average Median

Replay input 278483 3411 GB 21 kB 268 MB 13 MB 866 kB
Merged zips 4486 3411 GB 41 kB 1744 MB 779 MB 146 MB
Change / 62 – x 2.0 x 6.5 x 60 x 174

where the files were published for transfer and distributed
to the regional centres. For the file merging test the drops
were channeled to the merging system on a separate sys-
tem. The merged archives were sent back to the transfer
chain with updated catalogue information. The archives
were collected and held until the end of the data challenge,
and then released as a transfer performance test.

RESULTS

We have not been able to measure any overhead for the
layer accessing files through the storage factory plug-ins.
Opening each archive only once in each thread however is
an advantage if small amounts of data are read from many
archive members, especially with dCache.

File merging is resource intensive. Only moderate
amounts of CPU capacity are required to create zips. The
main requirement is correct scheduling of simultaneous
large streams of data to and from network and disks. We
rejected three Linux configurations before settling on a Sun
Solaris system capable enough for the job. The first Linux
system lacked sufficient disk capacity and CPU and I/O
capacity to keep up with the incoming data averaging at
most 5-6 MB/s. The second system was identical except
it was dedicated to the task and had more disk capacity.
While the hardware (2 x 1 GHz Pentium III, 512 MB mem-
ory, 20 GB/7200 rpm EIDE drive, ext3 file system) seemed
adequate, the operating system (Linux 2.4.x) appeared un-
able to properly schedule concurrent reads and writes: the
merging was read starved and the disks trashed. We tested
another Linux configuration with a RAID drive to check
this hypothesis, and the I/O performance improved, but not
sufficiently. We finally settled on a 2-CPU Sun with SAN
(RAID) disks which proved to handle both the CPU, net-
work and I/O load well enough to keep up with the incom-
ing data rate and to even recover from processing backlogs.
It is evident that sufficiently capable hardware and operat-
ing system must be used for file merging.

Merging efficiency depends on the data mixture received
by the agent. When a farm runs jobs for a mixture of
datasets and the queue age limits are low compared to the
output rates, files for different datasets are likely to get min-

gled, leading to less effective merging. If data is injected
offline for entire datasets at once, thousands of files may
get merged together.

We compared the rates achieved at DC04 to an ideal re-
play, and the results appear encouraging: DC04 sample on
a subset of the total data achieved significant merging rate,
approximatelyfactor sixty increasein median file size and
factor twenty increasein average file size. Table 1 and Fig-
ure 2 present the results for DC04. For comparison Table 2
and Figure 3 present similar results for a simulated partial
replay of the data challenge, with infinite queue time limits
to discover maximum possible merging rates.1

The transfer rate also increased as expected. The test at
the end of DC04 sustained approximately 70 MB/s from
CERN to two Tier-1s, a significant increase over typi-
cal rates seen: as shown in Figure 4 (courtesy of José
Herńandez, CIEMAT), during the transfer test the transfer
rate from CERN to PIC increased byfactor of four to five
to a sustained rate of about 30 MB/s.

Figure 4: DC04 transfer test: PIC bandwidth usage.

FUTURE WORK

Several parties have expressed interest in this techol-
ogy and CMS is in the process of making it more acces-
sible. The C++ classes to read and write zip archives have
been available through the LCG SEAL project for some
time already. The storage factory plug-in interface and the
modules to access different storage technologies through a

1Produced using PhEDEx replay infrastructure for what-if analysis,
testing different algorithms, and making performance tests. The replay
pushed about half of the DC04 data through a fake merging process.

(a) Size profile before merging (b) Size profile for zips (c) Number of members per zip

Figure 2: DC04 file size statistics

(a) Size profile before merging (b) Size profile for zips (c) Number of members per zip

Figure 3: DC04 replay file size statistics.

simple file-like abstraction are also being made available
through the SEAL project. The ROOT plug-ins will be-
come available through the LCG POOL project.

The file merging tools are available via PhEDEx [5].
Any zip-standard compliant tool can be used for merging,
including the popular Info-Zip [12] command line tools
zip andunzip available on many systems. The PhEDEx
tools will work on most unix-like systems; they have been
tested on Linux, Solaris and Mac OS X. The analysis and
replay tools are also part of PhEDEx.

The ROOT developers considered the zip read/write
technology sufficiently useful that they copied most of
the plug-ins and zip file access code whole sale into their
project and released it in a recent ROOT 4 version. Their
implementation does not use the SEAL or CMS libraries, it
has a separate copy of the code.

CMS is evaluating this technology further. We are im-
proving the performance of the merging tools and making
further simulations on the impact of the parameters on the
file size, network transfer, mass storage and analysis perfor-
mance. We are writing a guide on hardware configurations
and deployment. We will also study the feasibility of using
the same technology in CMS online farms.

ACKNOWLEDGEMENTS

We thank the CMS management and the DC04 crew.

REFERENCES

[1] D. Stickland, “Computing Models and Data Challenges of
the LHC experiments”, these proceedings.

[2] A. Fanfani et al, “Distributed Computing Grid Experiences
in CMS DC04”, these proceedings.

[3] D. Bonacorsi et al, “Role of Tier-0, Tier-1 and Tier-2 Re-
gional Centers during CMS DC04”, these proceedings.

[4] The CMS Technical Proposal,
http://cmsinfo.cern.ch/TP/TP.html

[5] T. A. Barrass et al, “Software agents in data and work-
flow management”, these proceedings. http://cern.ch/cms-
project-phedex

[6] V. Lefébure, J. Andreeva, “RefDB: The Reference Database
for CMS Monte Carlo Production”, Proceedings of
CHEP’03, La Jolla, USA, March 2003.

[7] http://www.opengroup.org/onlinepubs/007908799/

[8] P. Mato et al., “SEAL: Common core libraries and services
for LHC applications”, Proceedings of CHEP’03, La Jolla,
USA, March 2003. http://seal.cern.ch/

[9] D. Düllmann et al, “POOL Development Status and Plans”,
these proceedings. http://pool.cern.ch/

[10] http://root.cern.ch/

[11] http://www.pkware.com/company/standards/

[12] http://www.info-zip.org/

