
SUPER SCALING PROOF TO VERY LARGE CLUSTERS

M. Ballintijn, G. Roland, K. Gulbrandsen, MIT, Cambridge, MA 02139, USA
R. Brun, F. Rademakers, CERN, Geneva, Switzerland

P. Canal, FNAL, Batavia, IL 60510, USA

Abstract

The Parallel ROOT Facility, PROOF, enables a physicist
to analyze and understand very large data sets on an inter-
active time scale. It makes use of the inherent parallelism
in event data and implements an architecture that optimizes
I/O and CPU utilization in heterogeneous clusters with dis-
tributed storage. Scaling to many hundreds of servers is
essential to process tens or hundreds of gigabytes of data
interactively. This is supported by the industry trend to
pack more CPU’s into single systems and to create bigger
clusters by increasing the number of systems per rack. We
will describe the development of a standardized benchmark
for PROOF clusters. The benchmark is self contained and
measures the network, I/O and processing characteristics
of a cluster. We will present the comprehensive results of
the benchmark for several clusters, demonstrating the per-
formance and scalability of PROOF on very large clusters.

INTRODUCTION

The Parallel ROOT Facility, PROOF, is a part of the well
known ROOT system (http://root.cern.ch/) [1]. It allows for
easy and transparent analysis of large collections of ROOT
files in parallel on remote clusters of computers.

The main design goals for the PROOF system are trans-
parency, scalability and adaptability. The use of the system
is transparent in that there is as little difference as possible
between a local ROOT client based session and a remote
parallel PROOF session, both being interactive and giving
the same results. By scalability we mean that the basic ar-
chitecture will not put any implicit limitations on the num-
ber of computers that can be used in parallel. In this paper
we will assess how well we have achieved this goal so far.
By adaptability we mean that the system should be able to
adapt itself to variations in the remote environment (chang-
ing load on the cluster nodes, network interruptions, etc.).

Being an extension of the ROOT system, PROOF is de-
signed to work on objects in ROOT data stores. These ob-
jects can be individually keyed objects as well as

���������
based object collections. By logically grouping many
ROOT files into a single object, very large data sets can
be created. In a local cluster environment these data files
can be distributed over the disks of nodes within the cluster
or made available via a NAS or SAN solution. Remote file
access protocols available in ROOT, like rootd, dCache or
RFIO can be used as well.

By employing Grid technologies, PROOF has been ex-
tended from single clusters to virtual global clusters. In

such an environment the processing might take longer (not
interactive), but the user will still be presented with a single
result, like the processing was done locally.

The development of PROOF is a joint effort between
CERN and MIT. A more extensive introduction to the use
of PROOF is available in [2]

As we deployed PROOF on larger and larger clusters it
be came clear we needed a way to validate the algorithms
used to distribute work over the slaves as well as to monitor
the performance of the network, I/O and CPU resources in
the clusters. In this paper we will describe the extensions
to PROOF which make this possible and show the results
obtained by applying them to PROOF running on very large
clusters.

BENCHMARK PACKAGE

The benchmark package consists of three components,
test data generation, standard test queries, and the system
performance monitoring. Together they provide a stan-
dalone package that can be used to validate the configu-
ration of a (new) PROOF cluster, provide a quick way to
measure its performance, or to study in dept the perfor-
mance characteristics of its components. The package is
fully self contained, a standard ROOT installation is all that
is required. All the files of the benchmark can be found in������� ��	�
�	�
���������
��������������������

. We will now discuss each
of the components in some detail.

Test data generation

The test data consists of ROOT trees containing objects
of the standard ROOT ��� ����� example class. This class
is a realistic model of a non trivial HEP event and uses
modern ROOT features like the

� � ���
smart pointer. The

shell script ����� � � � ����� � �"!#��� is provided to create a
PROOF archive or PAR file. This archive will be uploaded
to the PROOF slaves making the ��� �$��� class available in
the slave servers. The test data is generated in situ on the
slaves using PROOF by running a simple Monte Carlo sim-
ulation on each of the slaves. The user runs the script
�%��� � � � �$��� ���������&!(' , specifying the directory on each
node where the file(s) will be written, the number of events
per file and the number of files per node. The script de-
termines the list of nodes and the available slaves and then
runs the commands to generate the files. The companion
script �%��� � ��)������"!(' is used to create the

��*�	����
that de-

scribes the generated test data, which can be used to run
queries on the data. An example session looks like:

+ �%��� ��,�� � �$����,$ � �"!-���+ �������
�������/.10�243 ����� ��5�6����������87:9
�������/.<;=2>!1? �%��� ��,�� � ������,����������@!('@7�AB
$� � CAEDF;�0�0�0�0�08D1G%9�������/.1H�2>!(I �%��� ��,$��)J�����K!('�������/.1L�24��*�	����NMB)PO �%��� ��,���)J�����Q7�AB
�� � CAEDF;�9

Standard test queries
The benchmark package currently contains

three
��	���R����B�����

based queries. The first one,
��� ������������� S����������&!(' measures the overhead of the
PROOF system, it does not read any data from the tree.
The second one, ��� ������������� �������@!(' reads all the data and
creates the maximum load on the I/O system. The third
one, ��� ������������� ������� � ��"!(' , reads about 20 % of each
event, more closely simulating a real life physics analysis.
The queries that read data fill histograms that are returned
to the client. This simulates normal usage and provides a
cross check on the correct execution of the queries.

Performance measurement extensions
PROOF has been extended with a comprehensive perfor-

mance monitoring and measurement system that provides
easy global monitoring of a query as well as the ability to
record the detailed sequence of events and interactions be-
tween the components of the system.

The global monitoring is provided by a set of histograms
collected by the PROOF master server. These histograms
measure for each slave server a number of basic quantities.
The histograms are returned to the client at the end of the
query in the standard output list. They can also be selected
for dynamic feedback during the query, providing a real-
time overview of work going on in the slaves. Table 1 lists
the histograms that are currently implemented. The moni-
toring histograms are enabled by calling:
�������/.TG�243 � � � 5�6�	�����U � R$V��@7�A:���������Q!W	�� � �J�BX%Y��B�EA%D:;�9CZ

Table 1: PROOF Performance Histograms
Name1 Description
PacketsHist Packets processed per slave
EventsHist Events processed per slave
NodeHist Slaves per file serving node
LatencyHist GetPacket latency per slave
ProcTimeHist Packet processing total Time per slave
CpuTimeHist Packet processing CPU time per slave

The detailed system event trace stores interesting events
and associated parameters. It is implemented using a
ROOT tree that contains objects of the

��������� ��� ����� class.
The event trace can be enabled in the master only, which
provides information from the packetizer, or in master and

1Actual names have “PROOF ” prepended

slaves in which case additional information for each file
open and read operation is stored. This last mode provides
very detailed information but also produces a large amount
of data. Table 2 lists the the currently implemented event
types. The event trace and slave event traces are enabled
by calling:
�������/.([�243 � � � 5�6�	�����U � R$V��&7�A\���������]!W	�� � ���B��� � �$�%A�D=;�9^Z�������/.(_�243 � � � 5�6�	�����U � R$V��&7�A\���������]!W	�R ��� ��	�� � �J�B��� � �$��A%D=;�9EZ

Table 2: PROOF Trace Event Types
Name Source Description
Start M, S Start of query
Stop M, S End of query
Packet M Details of a processed packet
File M File processing starts or finishes
FileOpen S A file is opened
FileRead S Details of a single file read

The performance monitoring and measurement system
provides an extensible framework. It is easy to add new
histograms or new event types. It is expected that as we
gain experience with these tools and with the complex en-
vironment of distributed PROOF clusters new features will
be added.

It is also important to note that this system is imple-
mented using only the powerful features and tools already
available in ROOT and PROOF. The trees produced are
easily analyzed using the standard ROOT analysis and vi-
sualization tools.

Benchmark support scripts
A number of scripts are included in the benchmark pack-

age that facilitate running the benchmark on a cluster. They
can be used out of the box or may be modified for specific
benchmark goals.

` Run Node Tests.C For a sequence of increasing
number of slaves, runs each selector a given number of
times. This gives quick validation of the configuration
and a comprehensive overview of the performance of
the cluster.` SavePerfInfo.C Saves the monitoring results to a file
for later analysis.` Draw Slave Access.C Draw a profile of the number
of slaves active over the duration of the query.` Draw Time Hists.C Draw the basic timing his-
tograms.` Draw PerfProfiles.C Create graph of the results of a
run of Run Node Tests.C.

MEASUREMENTS OF LARGE CLUSTERS
In order to do meaningful and repeatable tests on large

clusters it is imperative to have exclusive use of a cluster for

a block of time. For the first set of measurements we were
grateful for the access provided by Prof. Frank Wuerth-
wein, who is in charge of CDF computing. Being able to
run on 150 nodes of their new cluster, before it went into
production was extremely helpful. We learned a number
lessons from this initial test. It is important to use local
disk rather than NFS for tests of more than a few tens of
nodes. The precise number depends of course on the NFS
servers, but even light access by each node will quickly add
up to an overwhelming load on the servers. Automating all
steps of the test provides efficiency and repeatability. We
also found bugs in the packetizer and the trace package.
We then decided to run a comprehensive set of tests on a
slightly smaller cluster, Pharm, on which we will report
below followed by another large scale test, this time using
the Phobos RCF cluster, also discussed below.

Pharm cluster, 24 nodes

The Pharm cluster is a privately run cluster, owned by
Phobos. It is typical for many small analysis cluster cur-
rently in use by HEP groups. It contains several generations
of machines and was only recently upgraded to full Giga-
bit Ethernet. Initial tests on this cluster failed because the
nodes were connected to two switches with just a 100 Mbit
link connecting them. This layout makes it difficult to use
all nodes in a single PROOF session as one or two slaves
can already saturate this link. The configuration after the
upgrade which was used for the tests is listed in Table 3.

Table 3: Description pharm nodes

Num. CPU Mem Disk Network
6 2x P3 730 MHz 512 Mb ATA Gbit
6 2x P3 930 MHz 512 Mb ATA Gbit
12 2x P4 1.8 GHz 1 Gb ATA Gbit

Figure 1 shows the total time to run a query as a func-
tion of the number of slaves (gray points). The setup uses
one data file of 100 Mbyte per slave, the amount of data
grows with the number of slaves. The triangle, square and
diamond markers correspond to the three standard selectors
described above. Each point consists of the average of four
measurements. The three regions correspond to the three
types of machines in the cluster. The black and white mark-
ers show the time to run the query in a local root session.
The black markers correspond to a query on a single file
local to that node while the white markers correspond to a
query run over all data (44 files), normalized to a single file.
Figure 1 was obtained with a configuration of one slave per
node. In this setup PROOF performs very well, the fact that
the total query time remains below the local query time for
the slower nodes indicates that the faster nodes successfully
contribute to the slower nodes. In Figure 2 a similar mea-
surement is shown, but now using a configuration of two
slaves per node. It can be observed that the faster nodes

Number of Slaves
0 5 10 15 20

P
ro

ce
ss

in
g

Ti
m

e
[s

]

0

5

10

Full Event
Partial Event
No Data
Client, All Files, Normalized
Client, 1 File
Using PROOF

Figure 1: Total query time, 1 slave per node on pharm

have enough I/O and memory bandwidth to reach the same
query time. However, the slower nodes reach a bottleneck
and the total query times increases significantly. As a re-
sult the faster nodes cannot contribute because the rootd
processes on the slow nodes are competing for the same
resources.

Number of Slaves
0 10 20 30 40

P
ro

ce
ss

in
g

Ti
m

e
[s

]

0

5

10

Full Event
Partial Event
No Data
Client, All Files, Normalized
Client, 1 File
Using PROOF

Figure 2: Total query time, 2 slaves per node on pharm

In order to better understand the latency associated with
reading a remote file using rootd we also enabled the trace
tree on the slaves. In Figure 3 the distribution of latencies
is shown for the cases of two slaves per node, forty four
slaves total. The average of 1.5 ms should be compared to
200 a s latency for local reads.

RCF cluster, 192 nodes
The Phobos RCF cluster is one of the four large, cen-

trally managed clusters at BNL. This cluster also contains
a number of generations of servers. These servers are again
connected to a number of switches. The servers used in our
test are listed in Table 4. Each group is connected to a
switch and the switches are connect through four bonded
Gigabit links.

Figure 4 shows again the query time as a function of the
number of slaves. The system performs very well up to 100

Time [s]
0 0.002 0.004 0.006 0.008 0.01

1

10

210

310

Figure 3: Remote file read latency

Table 4: Description RCF nodes
Num. CPU Mem Disk Network
18 2x P4 1.4 Ghz 1 Gb ATA 100 Mbit
99 2x P4 2.4 Ghz 1 Gb ATA 100 Mbit
75 2x P4 3 Ghz 1 Gb ATA Gbit

slaves, reaching an aggregate throughput of 800 MByte/s.
But above 100 slaves a dramatic increase in the time per
query can be observed. To start to understand what is
happening we can look at Figure 5. These graphs show
the number of active slaves during the query. We see the
number of slaves quickly ramping up, followed by a phase
where all slaves are processing. At the end, when no more
work remains, the number of active slaves drops to zero.
Looking at the bottom graph of Figure 5 we see that a single
slave, processing the last packet, remains active for many
seconds. This appears to be a general effect that occurs
as the number of slaves exceeds the threshold. The effect
seems to be caused by high latency remote file reads, but
the root cause is not yet fully understood. We are currently
evaluating several improvements that will allow us to avoid
triggering this effect.

Number of Slaves
1 10 210 310

P
ro

ce
ss

in
g

Ti
m

e
[s

]

0

5

10

15
Full Event

Partial Event

No Data

Figure 4: Total query time, 2 slaves per node on RCF

Time [s]
0 2 4 6 8

N
um

be
r

of
 S

la
ve

s
A

cc
es

si
ng

 F
ile

s

1

10

210

Time [s]
0 2 4 6 8

N
um

be
r

of
 S

la
ve

s
A

cc
es

si
ng

 F
ile

s

1

10

210

Figure 5: Active slaves during query, 96 & 128 slaves

CONCLUSIONS AND PLANS
The ability to measure the performance of PROOF and

to study in detail different aspects of the system has been
very valuable. The benchmark package has allowed us to
setup and run these tests in a very short amount of time.
This was a key factor in testing on the large clusters.

PROOF was shown to scale to well over a hundred slaves
at RCF. It is clear that a good understanding of the under-
lying system and network architecture is key. More work is
required on both PROOF and system architectures to reach
the next goal a 1000 slaves.

ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 0219063 and
No. 0313002.

REFERENCES
[1] Rene Brun and Fons Rademakers, ROOT - An Object Ori-

ented Data Analysis Framework, Proceedings AIHENP’96
Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys.
Res. A 389 (1997) 81-86. See also http://root.cern.ch/.

[2] M. Ballintijn, R. Brun, F. Rademakers and G. Roland, The
PROOF Distributed Parallel Analysis Framework based on
ROOT, Proceedings CHEP03 Workshop, La Jolla, California,
Mar. 2003, http://arxiv.org/abs/physics/0306110 .

