
The WEB interface for the ATLAS/LCG MySQL Conditions Databases and
performance constraints in the visualisation of extensive scientific/technical

data

A. Amorim, D. Klose, J. Castilho, L. Pedro, N. Barros, T. Franco, FCUL, Lisbon, Portugal
A. Vaniachine, ANL, Argonne, IL 60439, USA

Abstract

A common LCG architecture for the Conditions
Database for the time evolving data enables the possibility
to separate the interval-of-validity (IOV) information from
the conditions data payload. The two approaches can be
beneficial in different cases and separation presents chal-
lenges for efficient knowledge discovery, navigation and
data visualisation. In our paper we describe the conditions
data browser - CondDBrowser - a tool deployed in ATLAS
for scientific analysis and visualisation of this data.

A wide availability and access to the overall distributed
conditions data repository was achieved through a seam-
less integration of the IOV and the payload data to the user
a unifying web interface that hides the persistency storage
details. Another user-friendly feature of the tool is a sim-
plified querying language similar to QBE (Query by Exam-
ple).

Our case study is based on the web interface developed
for the ATLAS/LCG ConditionsDB. The interaction with
other payload storage technologies, external to the Condi-
tionsDB, will also be presented. In particular, the integra-
tion of the NOVA database technologies.

We will discuss how the information is gathered from the
ConditionsDB and the corresponding extensions needed to
enable data browsing in the external repositories, how it is
organised, and what kind of operations (search and visual-
isation) are allowed. We’ll also present how this interface
uses the C++ API extending it to a similar PHP interface,
that can be used to browse data collected using any of the
ConditionsDB implementations.

Performance constraints are also presented and will be
discussed in detail.

DEPLOYMENT

The CondDBrowser was deployed in 2004 to support
ATLAS Combined Test-beam data analisys operations. It
provides an intuitive interface that enables the end user to
inspect data kept in the Conditions Database.

Conditions Database (CondDB) stores data using a tem-
poral extension to the relational model, this means that all
data managed by this tool has an Interval of Validity (IOV)
associated with it [1]. That data follows an hierarchical or-
ganisation, in which tables and blobs are kept inside Fold-
ers and FolderSets. The CondDBrowser gives support to
this kind of visualisation, and it is now providing naviga-
tion and browsing capabilities to more than 8 GB of con-

ditions data in 1800 folders and 6 GB of test data from
sub-detectors [2]. This data is growing at a high rate, and
the CondDBrowser was developed to scale with the data.

TECHNOLOGY

The CondDBrowser extensively uses the PHP Bind (of-
ten called only Bind), a PHP Extension. This module ex-
ports the CondDB API to the PHP programming language,
enabling the emerging of new tools faced to the World
Wide Web development. This is made using a PHP Cus-
tom Extension. There are some differences among the API
available to PHP and the standard CondDB API, but since
we are talking about two programming languages that fol-
low different paradigms, it could not be avoided.

The set of operations implemented by the Bind rely on
the Conditions Database. All these operations are read
only for two reasons. The first one is because the Cond-
DBrowser does not make write operations, the second is
based on security reasons. If we expose access to the
Database to the Internet, the best way to avoid corruption
of the data (due to malicious or neglected use) is to provide
only read only access to the users. Of course this is a limit
to the operations available in the Web Interface, and there
may be the need to provide write access in the future.

Figure 1: PHP Bind’s diagram

As we can see from Figure 1 the Bind does not need to be
in the same host as the database. This give the possibility to
have several tools running in different hosts operating in the
same database. That gives us an obvious advantage when
dealing with strong efficiency requisites, since it won’t af-
fect the database performance when the system is dealing
with HTTP requests.

The Bind only relies on the Conditions Library and this
makes it DBMS independent, because the Conditions Li-
brary encapsulates the DBMS details. This gives us the



chance to support several DBMS architectures, and if we
guarantee that the CondDB API is available to each one of
them, then also the Bind will. Also, any changes on the Re-
lational Schema of each implementation won’t be reflected
to the Bind, that can survive without changes as long as the
API stays the same.

Performance issues were also considered, and there was
the need to deal with the limitations of the Conditions API.
When fetching a bulk of data from the database, there is
the need to analyse the data in chunks instead of the several
thousands of objects returned by a query. This is a result
from the known limitation of the human brain to analyse
large amount of information at the same time. Since the
Conditions API doesn’t has a feature to limit the number of
objects returned by the query, the Bind uses a mechanism
to return a set of objects from a given interval instead of
the full set. The CondDBrowser uses this mechanism in-
tensively, in order to allow the user to analyse one hundred
objects at a time. This feature also brings into considera-
tion performance issues. Since the Bind needs to fetch data
from C++ and export that data to PHP, we would like to
guarantee that only the relevant objects go through this pro-
cess. Avoiding operations over objects that the user doesn’t
want to analyse enhances the performance of the system.

Finally we refer to another feature supported by the Bind
that is not present in the CondDB API. Usually the IOV is
represented by two time stamps, a ‘Since time’ and a ‘Till
time’. In the Atlas Experiment it is also usual to see time
representations as a ‘Since run/event’ and ‘Till run/event’
pair. This differentiation is only made by the PHP bind,
and is the only feature not present in the Condition’s API.
CondDB treats all the IOVs as a pair of Keys, and does not
distinguishes between the two representations.

It is good to notice that the complete functionalities of
the Condition’s API are not exported to the PHP because
the PHP Bind was not a milestone. The goal was to put the
CondDBrowser up and running, and the Bind is only a way
to achieve it.

DATA ANALISYS

ConditionsDB uses features from both Hierarchic and
Relational database models. From the Hierarchic model
we have Folders and FolderSets, from the Relational model
it inherits Blobs and the so called CondDBTables1. This is
just a brief introduction to ConditionsDB, please refer to[1]
for further information.

The CondDBrowser tries to reflect the nature of the Con-
ditions Database, using an intuitive and user friendly in-
terface. It allows the user to browse the hierarchic or-
ganisation of Folders and FolderSets, to query Blobs and
CondDBTables[1] and to access the payload of NOVA
Blobs2.

1CondDBTables also use some features from the Object-Relational
model

2described in the NOVA Integration section

Figure 2: Folder & FolderSets menu

Figure 2 shows the view for browsing the hierarchic or-
ganisation of the CondDB available to the user. This menu
allows the end user to inspect the FolderSets and select
a Folder that contains CondDBTables or Blobs (bot not
both). When the user selects a Folder or FolderSet, all the
meta information regarding to the item will be available.
This information will describe the type of the item (if it is
a Folder or a FolderSet). If a Folder is selected, the type of
the data stored in it will also be shown (if it stores Blobs,
or a CondDBTable). Finally, the description, attributes and
path3 of the item will be available. Figure 3 shows an ex-
ample of the meta information display.

Figure 3: Folder Description

After selecting a target Folder to analyse, the user as the
chance to query the data structure contained in it. The data
structure may vary between Blobs, CondDBTables, Cond-
DBTables with IDs and CondDBTables with Tags. Al-
though there are significant differences between the vari-
ous data types, the procedure to query any of them is very
similar. A menu is made available with several options and
a button, like the one in Figure 4. If any of those options
is not available for the chosen data structure, it won’t be
available and the user will not be able to select it.

The first option (from left to right) regards to the ability
to browse a data type with a chosen Tag. Tags are used
to take snapshots4 of the database. Every folder has the
Tag ‘HEAD’ associated to it by default. That Tag retrieves
objects5 with the highest layer. Using this option, the user
can browse a data type with the selected Tag. The default
Tag is the one named Head, and it retrieves the objects with

3the location of the item in the hierarchic model
4a snapshot is the exact state of a temporal table at a certain point in

time
5an object can be seen as a Blob or a Row



the highest layer from the selected data structure.
The second option (when available) gives the user the

chance to select all the objects that intercept a given mo-
ment in time. Using this feature the user is able to analyse
all the versions of a given object, and not only the one with
the highest layer. This may be the less used option from all
the browsing capabilities of this tool.

Using the last option, the user is able to inspect a group
of objects that intercept a given time interval. If layers are
available in the data type that the user is browsing, this op-
tion will only retrieve the objects with the highest one. In
the case where the layer system is not applied6, the objects
returned are all that intercept the given interval.

The combo box available at the lower right corner of the
menu is a shortcut. It was made to avoid the fact that the
user was always typing the since/till dates for the last N
minutes. Using this combo box the user can select minutes
in the last hour (with intervals of 5), and use that interval to
browse the history of the data.

The small check box located in the bottom of the menu
regards to the fact that some IOVs are stored has Run/Event
pairs, instead of regular dates. Using this option IOVs are
presented to the user in that format. This was a requirement
that appeared after the NOVA Integration, described in the
next section.

In Figure 5 we can see the result of a query being shown
to the user.

Figure 4: Data inspection menu

Figure 5: Analysing data

The result of a query will be shown in chucks of one
hundred objects at a time. This deals with the two situa-
tions described before. Performance and the huge amount
of data to analyse at a time.

When the user is querying CondDBTables, there is the
need to restrict the query to match some values of a given

6i.e. CondDBTables with IDs

column. For this reason, another menu is also shown to
the user when a table is being subject of analisys. The
menu shown in Figure 6 is an example on how to make
restrictions in the rows retrieved by a query. In this case,
the browser will retrieve all rows where the value on the
column ’seqnr’ is equal to 1. This menu will restrict the
results of the query issued with the menu described above.
This means that, if the user issues a ’browse history’, the
CondDBrowser is able to make restrictions in the result. It
doesn’t mean that the user is able to make a query with-
out taking in consideration the option selected in the menu
described above.

The way how the user queries the database was inspired
in a simple DML language named ’Query by Example’
(QBE)[3]. Although these menus are less expressive than
QBE, they provide a very intuitive interface and only re-
quires that the user knows about the Conditions Database
philosophy.

Figure 6: Analysing data

NOVA INTEGRATION

To support conditions data payload storage in NOVA
database [4] the CondDBrowser was enhanced with NOVA
binary data browsing capabilities. Integration with the
NOVA Database could only be achieved with close cooper-
ation between the developers of the Lisbon group and the
NOVA developing team. This interaction resulted in a sys-
tem that detects and interprets NOVA references7. After
the interpretation of the reference, the browser connects to
the NOVA Database and displays the result of the NOVA
table.

NOVA Blobs are located inside regular Folders, that can
be browsed by the methods described above. After query-
ing one of these Folders, the user will see all the Blobs that
match the given query. A Link will appear, allowing the
user to inspect the content of the Blob8. An example is
shown in Figure

Figure 7: Blob with NOVA Reference

The user may inspect the payload, and after it’s done a
Link that connects to the NOVA Database will be shown.

7NOVA references are kept inside the payload of Blobs
8this link is also enabled even if the Blob doesn’t contain a NOVA

reference, but the name of the link differs



After choosing this Link, the user will be able to browse
the NOVA Table and analyse it’s contents. Performance
was also taken in account in this situation, and the user will
see the data in chunks of one hundred rows. In Figure 8
we have an example of a NOVA Table being analysed by a
user.

Figure 8: NOVA Table

This was a simple method, and is a great example that
teach us how easy it is to achieve interaction between dif-
ferent tools, when several developing teams make some
work together. It is very important that developers on one
team have the feeling that work is being also made by the
developers of the other team. It seems like a logic process,
and things work better this way.

FINAL CONSIDERATIONS

After seeing how the CondDBrowser works, it is now
time to make one final consideration. This consideration
can be seen as a proposal, or even as a challenge since it
involves all the developers that create tools that need to in-
teract with temporal databases.

During the development of the CondDBrowser, sev-
eral discussions where made about the Time Zone used
to store/show IOVs. The CondDBrowser assumes that the
IOVs stored in the CondDB are in the UTC format. And
there are several reasons. The browser can connect to any
database, this includes any time zone possible. Also, the
user may be using the browser in a time zone different from
the one used by the database. But the most important rea-
son is that the database may be distributed, and this gives
the chance to have several clusters in different time zones.

Also remember that in some countries have summer and
winter time. If some data is stored in winter time and the
user analyses it during summer, he needs to have the con-
version in mind. This conversion can also be coded in the
tools, but that would generate a lot of confusion.

For all these reasons, our proposal is to store IOVs in the
UTC format. It is hard to believe that other solutions may
be reasonable than this one.

ACKNOWLEDGMENTS

We thank all of our ATLAS collaborators and, in par-
ticular, the developers from the online and offline software
domains.

Argonne National Laboratory’s work was supported by
the U.S. Department of Energy, Office of Science, Office
of High Energy Physics, under contract W-31-109-Eng-38.

REFERENCES

[1] A. Amorim, J. Lima, L. Pedro, D. Klose, C. Oliveira, N. Bar-
ros. IEEE-NPSS: An Implementation for the ATLAS Con-
ditions Data Management Based on Relational DBMSs. In
Proceedings of the 13th IEEE-NPSS Real Time Conference,
pp. 591- 595, May 2003.

[2] S. Schmidt conditionsctb 2004 Folder Summary/Folder De-
tails. Available: http://www.abstracture.de/atlas/ctb.html

[3] Henry Korth, Abraham Silberschatz, Database System Con-
cepts, USA: McGraw-Hill Education, 1997

[4] A. Vaniachine et al, CHEP’03, La Jolla, USA, 2003, eConf
C030324, MOKT006 (2003) [cs.db/0306103]


