
ADDRESSING THE PERSISTENCY PATTERNS OF TIME EVOLVING
DATA FOR ATLAS/LCG USING THE MYSQL BASED CONDITIONS

DATABASE INTERFACE

A. Amorim∗, Dinis Klose, Luis Pedro, Nuno Barros, Tiago Franco,
Universidade de Lisboa, CFNUL - Faculdade de Ciências , Lisboa, P-1749-016, Portugal

Andrea Valassi, Dirk Dullman, CERN, Geneva, Switzerland

Abstract

This paper describes the main developments introduced
in the revised Conditions Database Interface deployed
against the MySQL backend. The need for considering the
different patterns of archiving and organizing the informa-
tion along the time path is explained and the specific so-
lutions introduced in the Conditions Interface to deal with
the time interval and version description of conditions ob-
jects is discussed. The requirement of simultaneously shar-
ing data among different applications in different environ-
ments, that share only the Conditions Database interface in
common, motivated us to create a commonly used generic
class for data that generalizes the relational table and that
is independent of the object streaming solutions used. This
not only allows the access to data that is not hidden by the
serialization in some specific framework, but also enables
the table projection and restriction on the database server
for user data. The future directions of investigation to in-
terface this generalized container to the user in different
frameworks are discussed. The issue of distributed data
storage and partitioning among long periods of time, is also
addressed.

INTRODUCTION

Managing the calibration, alignment, configuration, con-
trol and monitoring of modern large hadron collider exper-
iments like ATLAS presents remarkable challenges to the
database systems. This document describes the main de-
velopments that were introduced in the MySQL version of
the Conditions Database Interface to address some of these
problems and discusses the new approaches that were re-
quired by the recent usage of the interface.

A common feature to the objects in the conditions
database is the fact that they must be associated with a
time interval of validity. They represent our knowledge
of the detector for a given time period and must be asso-
ciated, either through time or some other index, to all the
events collected during that period. Although there must
be a clear association between each event and the condi-
tions that were used when processing it online, further im-
provement of the conditions for the same period leads to
the concept of versions that must be packed in physically
meaningful collections associated with tags.

∗Antonio.Amorim@fisica.fc.ul.pt

The Conditions Database concept was first introduced in
BaBar [3] as part of the support for information that was
organized according to time intervals complementing the
OODBMS system that was used for all data. CERN has
picked up this effort [1] and made two implementations us-
ing first an object and later a relational database technology.

The development of the MySQL implementation that is
described in this work [4] was motivated initially from the
need to use online the Conditions Databases on platforms
that were not supported by the vendor solutions used in the
previous implementations. Since the MySQL implementa-
tion was relatively easy to deploy, both in the online and
offline environments, we were able to concentrate our ef-
forts on many important issues that were raised by its us-
age in different domains. These are both associated with
the management of time intervals and versions, enabling
any application to deal with the schema of the data that is
stored and with the scaling of the system as the data gets
accumulated in time.

Different specific solutions were introduced in the Con-
ditions Interface to deal with the time interval and version
description of conditions objects both for online and offline
usage.

The development of a generic container that mapped a
database extended relational table to a numerically opti-
mized transient object, using STL containers, allowed us to
incorporate the advantages of the relational features while
directly mapping the transient objects to the tables in the
database server. Very different applications, that share no
common framework, can access the data in the database
using this transient generic container.

The issue of distributed data storage and partitioning for
long periods of time, is also important since it has impli-
cations on the design of the system and can only be ac-
commodated by taking into account the different levels of
indirection that are provided. These features provide an
important handle on the scalability and load balance in a
system that does not only aim to be completely distributed
and achieve a very high performance for hundreds of simul-
taneous users, but also to fulfill the requirement that all the
data collected during many years should be immediately
accessible at all times.



THE EXTENDED CONDITIONS
INTERFACE

This section describes the main extensions that were in-
cluded in the Conditions Interface together with the main
use cases that each of them addresses.

The generalized container

To allow data to be exchanged freely among different
applications in an optimal way, we have mapped a gener-
alized database table to a generic container that includes
the schema and the data stored in or out of the databases.
The framework specific objects that use an external serial-
ization framework like ROOT or POOL are still supported
trough the use of BLOBS.

The generalized container was defined through an ab-
stract interface allowing different implementations opti-
mized for different purposes. A single very optimized im-
plementation, based on the use of variable type STL con-
tainers, was provided up to now. The generalized container
is used both for data retrieval and data storage.

There are very interesting new developments that may
have implications on the future implementation of this
generic container, namely the relational implementation of
the ROOT TTree class and the POOL relational interface.
These avenues are being carefully investigated.

The different time patterns for data folders

The Conditions Database has a hierarchical structure
which is divided into foldersets and folders. Foldersets can
contain other foldersets and folders while folders can only
contain data. In the initial implementation there was only
one type of data objects which we shall call objects with
versions. Each object is associated to an interval of va-
lidity and carries the data as a BLOB. When an object is
inserted, the API checks if there is any overlap of existing
objects. If there isn’t, the object is simply inserted in the
folder. On the other hand, if there is overlap, this means
that there is a conflict of the intervals of validity which is
solved by attributing a different version to the object that
is being inserted. It is also possible to associate tags to
sets of objects and then retrieve them by specifying the tag.
In the initial implementation of the Conditions Database
only folders which contained objects with versions were
considered which allow the users to have different versions
of a given calibration or alignment to apply to the detec-
tor. While this initial implementation worked well enough
for certain types of data, such as calibration and alignment
data, it was found to be inefficient for data with different
characteristics, such as DCS data. Also, the fact that data is
stored as a BLOB makes querying for specific values im-
possible. Top address these requirements, two new storage
mechanisms were created, which take into account the dif-
ferent time evolution of online data such as DCS data:

• Tables,

• Tables with ID.

Tables This mechanism is used to store online data.
When a value or set of values is inserted an interval of va-
lidity is defined such that the end time is equal to infinite,
meaning that the interval is not closed. When a new value
or set of values is inserted, the previous value is closed by
setting the end time equal to the start time of the new value.
In this way, the time evolution for a given value or set of
values is continuous. The data itself is stored in a relational
table, where each column represents one value and is of
the same type as the value. This means that if you have a
value which is of type integer, the column in the table will
be of the same type. Supported types include integer, float,
double, bool, string and array of each of these types. The
fact that the data is stored in a relational table instead of a
BLOB makes it possible to query for values (e.g. get all
lines where value x>10).

Tables with ID This mechanism works much the same
as the tables mechanism, the difference being that one can
have different sets of data, which all have the same struc-
ture, in the same table. This means that you can have, for
example, several chambers which have the same structure
and properties and that you want to store their properties
in the database. One way to do this would be to store each
table in a different table. If, however, only the property of
one of the chambers changes from time to time, and not of
all chambers at the same time, it is more efficient to regis-
ter only this change. In the case of tables with ID, an ID is
associated to each chamber. When a property of one of the
chambers changes, the respective values are inserted with
the respective ID, and only the interval of validity of the
previous entry with the same ID is updated. This way, each
chamber is updated independent from the others.

The usefulness of being able to query for values led to
the creation of yet another storage mechanism, called tables
with versions. This mechanism is essentially the same as
the original one, except for the fact that the data is stored in
a relational table instead of a BLOB.

In order to make the API aware of the different stor-
age mechanisms available and able to distinguish between
them, folder types were created, associating a folder type
to each storage mechanism. Since each storage mechanism
represents a different time pattern, the folder types are as-
sociated to the different time patterns.

PARTITIONING IN TIME

The ATLAS experiment is supposed to last several years,
during which a large amount of data is going to be col-
lected. In order to improve performance, the data has to be
partitioned over several servers. The best way to achieve
this is by partitioning the data in time, dividing the data
into blocks that correspond to large time intervals, e.g.
three months. These blocks are then transferred to different
servers, thus distributing the load of the central server over



several servers. Instead of handling all queries, the central
server redirects to the server of the respective time interval.
All of this is done at low level so that the user doesn’t have
to know about any of it. The user just makes the request
and the API takes care of finding the right server to perform
the necessary action, using a partition table to check which
server has the requested data. Setting up the partition is an
administrative task, meaning that the DB administrator has
to perform the necessary actions to create the partitions and
moving them to the right server. It is possible to write tools
based on the API to perform part of the work.

INTERFACES IN ATLAS

For the widespread use of the Conditions Database in the
ATLAS experiment it was necessary to build a set of inter-
faces. There are multiple environments in which the users
would like to store data in the Conditions DB or access the
data stored in it, which led to the development of a set of
interfaces that make this possible for a wide range of envi-
ronments.

The ATHENA framework interface

The Athena framework is the common framework in
which the physics analysis will be made. This framework
is developed in C++ and is a component software. It was
a vital requirement that the users would be able to access
the data from this interface to make analysis. For this pur-
pose a conversion service was developed. This conversion
service is responsible for the conversion of the transient
generalized container in the Conditions Database to the
generalized container in the Athena framework, the Gener-
icDbTable. This generic transient object is nothing more
than a implementation of the generalized container for the
Athena framework, having the same functionalities. To
read data into the Athena framework, the user must send a
request to the DetectorStore, which will call the service re-
sponsible for the interval of validity of the object (IOVSvc)
and the service that should get the data itself. The latter
functionality is the responsibility of the CondDBMySQL-
CnvSvc. For the moment, there is also a simple facility to
store data into the Conditions Database, but further imple-
mentations are being analyzed.

The PVSS Interface

The PVSS API Manager is, as the name says, an API
which links PVSS to the Conditions DB. Basically, the
user defines a list of datapoint names in a specific data-
point container (see below) and sets up the database con-
figuration. The manager then connects to the datapoints
specified by the names creating entries, for each one, in
the database (each datapoint is one folder in the Condi-
tions Database). The initial values of these datapoints are
stored, and any change of value, is stored in the Condi-
tions Database through the storage mechanism for online

data (tables and tables with Id) described above. The main
features of this manager are:

Structure handling The manager is able to store
structures as such, that is, it creates a table which reflects
the structure of a datapoint. This includes the possibility of
any of the entries being a dynamic array.

Exception handling The manager uses exception han-
dling, making fault diagnostic easier.

Datapoint container To store datapoints, their names
are stored in a datapoint. Changes to this datapoint can be
made on-the-fly, meaning that the manager reacts automat-
ically to any change in the list of the datapoint names.

Configuration The configuration of the manager, that
is, setting the values for database connection, is done
through a specific datapoint which also contains status ele-
ments which hold the running status and the storage status
(running/not running). It is possible to make changes on
the fly, without having to stop and restart the manager. In
order to facilitate the configuration process, a graphic inter-
face panel is provided which makes it easy to set the values
of the configuration datapoint.

The Online Conditions Database Interface

In order to make Conditions data coming from the On-
line Software available, it was necessary to create an in-
terface between the Online Software and the Conditions
Database. This interface, which is called the Conditions
Database Interface (CDI), is responsible for the collection
of data grouped by the information services (IS) and the
storage of the collected data in the Conditions Database in
a structured way. The IS data is structured into tables where
entries change value over time. The data coming from IS
is stored in the Conditions Database via the online storage
mechanism of the extended API and using the generalized
container preserving the structure.

The Web Browser

A lot of users have stated the need for a tool of easy ac-
cess which would allow to look at the data in a way similar
to the way it is classified, by a hierarchical structure (fold-
ers) and a time of validity. For this purpose a tool was de-
veloped that could be used in any environment and would
provide a simple access to the data by the users. This tool
was written in PHP and uses an identification mechanism
similar to the Conditions Database to grant access for the
users. This tool allows the users to see the data stored us-
ing the generalized container in a way very similar to the
structure of the data in the container. For objects stored as
blobs (eg. NOVA objects) the browser provides a link to
the location where the data is in fact located.



USAGE IN THE TESTBEAM
The current implementation of the Conditions Database

has been successfully used in the 2004 ATLAS Combined
Testbeam to store conditions data. Specially the extensions
for online storage have been heavily used to store data com-
ing from the DCS and the Online Software.

FUTURE DEVELOPMENTS
For future developments several aspects are being looked

into:

Implementations

Currently there is one implementation in Oracle of the
original interface and one implementation in MySQL of the
extended API. Current planning foresees making an imple-
mentation in Oracle of the extensions and reviewing the
MySQL implementation. The possible use of the POOL
RAL is also being investigated.

Interface

The current interface, the original as well as the exten-
sions, is not very intuitive in its usage. It is planned to
redesign the interface in order to make it easier to use by
reducing the methods needed and the number of classes.
The methods themselves are also going to be simplified.

Extensions

The current generalized container is already very versa-
tile. However, it’s interface is not very intuitive adn there
are limitations concerning the possible datatypes. Future
plans include making the interface easier to use and ex-
tend the generalized container in order to accommodate
generic objects as column type and the possibility of hav-
ing columns with variable type. Currently there are four
different storage mechanisms (objects with versions, tables
with versions, tables and tables with Id). Additional stor-
age mechanisms are being investigated, more specifically a
hybrid mechanism which combines the online storage and
offline storage mechanisms to make it possible to store and
edit online type data.

Tagging

The most important aspect however, is the tagging mech-
anism. Until now, it was only possible to tag the HEAD.
This, however, is not enough to satisfy the user require-
ments.In order to make tagging more general and versatile
several new tagging options are being considered:

• Tag from tag: create a tag with the objects of another
tag

• Tag to tag: hierarchical tags that point to several other
tags

• Create tag or Re-tag to the old head with insertion time
less or equal to a given time (from BaBar)

• Use a re-tag time interval that only changes objects
that are contained in a user time interval

These tagging options should be general enough to allow
the users to tag any object or set of objects they want.

CONCLUSIONS
From all the challenges involved in the addressing of

the Conditions Database system, there were two that de-
serve a special consideration. The first regards the hetero-
geneity of the platforms involved, and the solution adopted
was the development of a common API that gives access
transparency[5]. The advantages of this approach are vis-
ible when the several tools supported by Conditions work
independently of the DBMS that is used. The second chal-
lenge regards the problematic of dealing with time vary-
ing data under the available DBMSs. Our approach is
based on a temporal extension to the relational model,
where the implementation of time based primitives gives
the user/programmer a high level of abstraction to manipu-
late execute DML and DDL on time based relations[7].

ACKNOWLEDGEMENTS
This work was supported by Fundação da Ciência e Tec-

nologia under the grant POCTI/FNU/43719/2002.

REFERENCES
[1] Stefano Paoli, Conditions DB Interface Specification, CERN-

IT Division

[2] Andrea Valassi et. al., , CHEP 2004 Conference, Interlaken,
Swiss, September 2004

[3] Igor Gaponenko, An overview of the BaBar Conditions
Database, CHEP2000 Conference, Padova Italy, January
2000.

[4] A. Amorim, J. Lima, L. Pedro, D. Klose, C. Oliveira, N. Bar-
ros. IEEE-NPSS: An Implementation for the ATLAS Con-
ditions Data Management Based on Relational DBMSs. In
Proceedings of the 13th IEEE-NPSS Real Time Conference,
pp. 591- 595, May 2003.

[5] G. Coulouris, J. Dollimore and T. Kindberg, ”Distributed
Systems - Concepts and Design”. Addison-Wesley, 3th Edi-
tion, 2000

[6] M. Bhlen et al. TDB Glossary. Available:
http://www.cs.auc.dk/ csj/Glossary/

[7] Abraham Silberschatz, Henry F. Korth and S. Sudarshan.
”Database System Concepts”. McGraw Hill, 4th Edition,
2001


