
New Applications of PAX in Physics Analyses at Hadron Colliders

Martin Erdmann1, Ulrich Felzmann2, Dominic Hirschbühl2, Christopher Jung2

Steffen Kappler1, Matthias Kirsch1, Günter Quast2, Klaus Rabbertz2, Jens Rehn3, Sven Schalla2

Patrick Schemitz2, Alexander Schmidt2 (c.a.), Thorsten Walter2, Christian Weiser2
1RWTH Aachen, 2University of Karlsruhe, 3CERN

Abstract

The PAX (Physics Analysis eXpert) toolkit assists physi-
cists in the analysis and interpretation step of a particle
physics research project. Its aim is to provide a new
level of abstraction beyond detector reconstruction which
facilitates code reuse and unification. PAX makes use
of fourvector arithmetics and offers sophisticated relation
management and memory management functionality. This
paper gives an overview of the toolkit and reports about
its application in the hadron collider experiments CDF and
CMS.

MOTIVATION

Physicists usually apply personalized analysis frame-
works which certainly are well suited for individual use
cases, but have not always been optimized with respect to
modern software design principles. One of the main moti-
vations for the development of the analysis toolkit PAX [1]
is to provide physicists with well crafted design concepts
which results in a gain of efficiency concerning develop-
ment and performance of analysis code. Some keywords
are memory management, relation management (to enable
construction of decay trees) and persistency (save/load de-
cay trees and different stages of the analysis to/from disk).

To facilitate efficient analysis development and to sup-
port team work, it is advisable to encapsulate the physics
analysis code in a layer which ideally is independent of
the data source. There have been earlier approaches e.g.
in the H1 and ALEPH experiments (H1PHAN [2] and AL-
PHA [3] projects). The good experience with these projects
motivated the development of a C++ toolkit which is capa-
ble to cope with the requirements of future collider experi-
ments.

One of the advantages of a separate layer for the analysis
code is the protection from changes in the user interface
of the underlying detector reconstruction framework. Only
the interface between data source and PAX objects has to be
changed in this case. Another advantage is the possibility
to apply the identical analysis code to various data sources
(detector data, Monte Carlo generator data) and even share
it among different experiments.

By providing an abstract language for the formulation of
the physics analysis, the user is enabled to develop gener-
alized analysis algorithms which may be applied in diverse
contexts.

A simple example of such a generalized algorithm is the
kinematics calculation of a W-boson in the decay mode

W → lν by using a reconstructed charged lepton, missing
transverse energy and a W-mass constraint. This algorithm
gives two independent solutions (interpretation possibili-
ties) for the boson. An implementation of this frequently
encountered task is available in one of the example appli-
cations for the PAX toolkit [4].

THE STRUCTURE OF PAX

The PAX toolkit provides a collection of classes which
provides containers and services necessary for the afore-
mentioned requirements. In this section an overview of the
basic design concepts of PAX is given.

The PaxFourVector Class

The PaxFourVector by default inherits the full function-
ality from the HepLorentzVector of the CLHEP [5] library
(optionally, the user can choose the TLorentzVector of the
ROOT [6] library instead). In addition to the fourvector
arithmetics of the base classes, PAX provides some data
members and methods that are proven to be useful by pre-
vious experiments (see Fig. 1). It also adds an implemen-

ROOT: TLorentzVector
�

4 components Px(),Py(),Pz(),E()
�

algorithms (rotation, Lorentz-boost, etc.)

OR
CLHEP: HepLorentzVector
�

4 components px(),py(),pz(),e()
�

algorithms (rotation, Lorentz-boost, etc.)

INHERITANCE

PaxFourVector: (is designed to access every
possible information in the reconstruction output)
� getCharge(),
� getParticleId(),
� lock(): the decay tree can be locked and excluded from analysis
� begin_vertex_relations, end_vertex_relations: to establish

decay trees and histories
� user_record: store additional information as string-double pairs
� experiment relations: associate any pointer to original detector

object with the PaxFourVector

Figure 1: The PaxFourVector Class

tation of local relation management (see PaxRelationMan-
ager section).

As every PAX physics object, the PaxFourVector has a
“user-record”. This is a key-value map that enables the user
to associate additional information to the fourvector such as
cone sizes of jet algorithms, quality of track reconstruction
etc.

Using the “experiment relations”, it is possible to store

pointers to detector objects in the PaxFourVector, as de-
scribed in more detail in the PaxRelationManager section.

The PaxVertex Class

The PaxVertex has similar properties as the PaxFourVec-
tor. The main difference is that PaxVertex is a threevec-
tor and therefore inherits from Hep3Vector of CLHEP, or
TVector3 of ROOT, respectively.

The PaxCollision Class

The PaxCollision provides a hook to handle multicolli-
sion events, as they occur at high-rate hadron colliders. It
has no vector properties but it provides the relation man-
agement to associate physics objects and separate the col-
lisions in the event.

The PaxEventInterpret Class

The PaxEventInterpret is a general container for the PAX
physics objects (PaxFourVector, PaxVertex, PaxCollision).
It is designed to represent one distinct interpretation of one
event. This means that in case of many possible parallel
interpretation possibilities, the user creates each interpreta-
tion in a separate PaxEventInterpret. This way, the analy-
sis may be advanced into different directions starting from
one PaxEventInterpret and making a copy for each hypoth-
esis (e.g. connecting particles to the decay tree in different
ways).

The copy of a PaxEventInterpret is effectively a deep
copy. All the objects contained in a PaxEventInterpret are
duplicated and the relations are set up correctly to stay
within the copy.

PaxCollisionMap PaxFourVectorMapPaxVertexMap

PaxUserRecord

...

PaxVertex

relations

PaxCollision PaxFourVector

relations

Px(),Py(),Pz()
Lock()
relations

Lock()
X(),Y(),Z()

Lock()
Print()

PaxEventInterpret

TVector3 TLorentzVector

Figure 2: The PaxEventInterpret Class

The PaxEventInterpret takes over object ownership as
soon as a new object is registered in it. It takes care of
proper cleaning up of the memory as soon as the consid-
ered object is no longer needed. This adds some conve-
nience for the user who does not have to worry about object
ownership, or memory leaks.

The PaxEventInterpret is persistent. All the contained
objects, including their relations, can be written to the stor-
age device and read back to memory.

The PaxRelationManager

The primary functionality of the PaxRelationManager is
the management of decay trees. The manager is based on
the “Mediator” design pattern [7]. This means that the re-
lations are local, in the sense that each object knows the
related objects, but there is no global map or directory of
the relationships. Each PaxVertex has outgoing and incom-
ing fourvector relations, and each fourvector has begin- and
endvertices. For an illustration see Figure 3. Here, two of

PaxFourVector

PaxCollisionRel PaxVertexRel PaxFourVectorRel

VertexRel
PaxBegin
VertexRel

PaxEnd

PaxExpClassRelMap

PaxExpClassRel

PaxRelationManager

PaxCollision PaxVertex

PaxOutgoing
FourVecRel

PaxIncoming
FourVecRel

relations relationsrelations

Figure 3: The PaxRelationManager Class

the components that constitute a decay tree are highlighted
(a PaxFourVector has begin-vertex relations and a PaxVer-
tex has outgoing fourvector relations).

The relation manager is also used to record an analysis
“history”. Each object which is copied keeps a pointer to
its original instance. This way the user may always go back
and ask for the original properties of an object which might
have changed during the development of the analysis.

The PaxRelationManager also implements a so called
locking mechanism. Using this mechanism it is possible to
exclude parts of a decay tree from the analysis (i.e. exclud-
ing a lepton from a jet finding algorithm). If one fourvector
or vertex is locked, all the objects down the decay tree will
be locked, too.

Figure 3 also shows another essential element of the rela-
tion manager. The PaxExperimentClassRelation can store
any pointer to an original detector object and associate it
to a PAX physics object. This way, it is always possible
to access the original detector information through a PAX
object at a later stage of the analysis. In the current imple-
mentation of PAX this feature is not available when writing
a PaxEventInterpret to disk.

Accessing Objects, the PaxIterator

To access the objects which are stored in the PaxEventIn-
terpret, or which are related to the considered physics ob-
ject, one can generally use the PaxIterator. It has a uniform
syntax which works for almost all cases of object access.

For convenience, there are also some methods that al-
low direct access without using iterators, such as get
mother/daughter particles.

EXPERIMENT INTEGRATION

As already mentioned before, it is advantageous to for-
mulate the physics analysis itself independently from the
underlying experiment environment to enable code reuse
and to protect from changes in the experiment interface.
To achieve this goal it is necessary to provide interface
classes for the particular experiment. It is also possible to
interface PAX to other data sources like Monte Carlo event
generators or fast simulation programs. Some of these in-
terfaces are provided and maintained by the PAX authors
on the PAX webpage [4]. Further interfaces provided by
PAX users are also made available on this webpage.

At the current time, interfaces are available for the ex-
periments CDF (Tevatron) and CMS (LHC). In the CMS
case PAX has been included in the CMS software envi-
ronment as an external package. That means that the user
does not have to take care of a proper installation because
it is always available when the CMS environment is set up.
To include the PAX libraries into the user analysis, only a
single line has to be added to the so called “BuildFile” of
SCRAM [8] which takes care of the CMS software config-
uration and build system. An extensive example analysis
can be found in the “Examples” subsystem of the CMS de-
tector reconstruction software ORCA [9].

The CDF implementation has been provided for the so
called “Stntuple” [10] in a similar way as described for
CMS.

APPLICATIONS

In this section two selected physics analyses, from the
experiments CMS and CDF, in which the PAX toolkit has
been applied, are presented

ttH Analysis in CMS

The PAX toolkit has been used in the study of the chan-
nel ttH (with H → bb) for CMS, using generator data and
data from full detector simulation as input sources.

The challenge is the full reconstruction of the ttH par-
tonic process as shown in the two Feynman Graphs in Fig-
ure 4. The difficulty resides in the large number of inter-

a) b)

t

Figure 4: The ttH Feynman Graphs

pretation possibilities of the final state of this channel. In
the case of perfect b-tagging and perfect jet reconstruction,

the number of interpretation possibilities is 24 for graph a).
For a visualisation of the concrete task see Figure 5.

MissE
T

�

b

b

b

b

q

q

W-boson
yields 2 interpretations

for W-boson (solve
quadratic equation)

?t

b

bH
which connections
are the right ones?

t

?

?

?

Reconstructed
Data

Figure 5: Visualisation of the interpretation possibilities of
the ttH final state

The reconstruction of the W-boson yields two solutions:
the longitudinal part of the neutrino’s momentum is un-
known and one is restricted to measuring missing trans-
verse energy. The unavailable component has to be ex-
tracted by using the W-mass as constraint and solving the
resulting quadratic equation.

The largest source of combinatorial multiplicities results
from the number of possibilities to connect the b-jets to the
decay tree. In case of realistic b-tagging or gluon radia-
tion there are many more interpretation possibilities. The
need for an efficient management of the combinatorics is
obvious.

In so called “analysis factories” all the interpretation
possibilities are realized and stored in separate PaxEventIn-
terprets. At a later stage of the analysis, the probability
for each interpretation is calculated by Likelihood criteria
and a “quality” is assigned to each PaxEventInterpret. The
user then may decide to choose the interpretation with the
best quality for the final result or even choose all the in-
terpretations at the same time using a weight which can be
calculated according to the quality.

The resulting mass plots [11] of this analysis are shown
in figure 6 and 7. It is important to point out that these
plots have been created with identical analysis code, but
with different data interfaces.

tt Production at CDF

An analysis of tt reconstruction in the electron-plus-jet
decay channel [12], shown in Figure 8, is similar to the
previously discussed ttH channel with respect to the com-
binatorial task and reconstruction of the decay tree.

For this study, the Pythia Monte Carlo Generator and
CDF detector simulation have been used. The resulting ex-
ample top mass plots for the hadronically and for the lep-
tonically decaying W-boson are shown in Figures 9 and 10
respectively.

Figure 6: The reconstructed Higgs mass in the ttH , H →

bb channel on generator level. Shown is the signal peak
with the correct decay tree combination and the back-
ground resulting from wrong combinations.

Figure 7: The same plot as in the previous figure but after
full detector simulation and reconstruction [11]. The same
analysis code has been used.

SUMMARY

The PAX library provides tools to enable an efficient
physics analysis of hadron collider data. It focuses on
reconstruction of complex decay trees and parallel pro-
cessing of different interpretation possibilities of an event.
It implements container, fourvector, vertex and collision

q

W
e
ν

qW

b
b

t

t

p

p

Figure 8: Example Feynman Graph of tt production.

Figure 9: Reconstructed top mass from one b-jet, the elec-
tron and missing Et using events generated with Pythia and
full CDF detector simulation.

Figure 10: Reconstructed top mass from two jets resulting
from W-decay, and one b-jet.

classes and provides a sophisticated relation and memory
management. PAX has successfully been applied in various
analyses including a tt̄H study in CMS and top analysis in
CDF.

REFERENCES

[1] “Physics Analysis Expert (PAX): first applications”, M. Erd-
mann et al., Proceedings of the International Conference on
Computing in High Energy and Nuclear Physics, CHEP03,
La Jolla, USA (2003), physics/0306085

[2] H1 Collaboration, internal software manual for H1PHAN

[3] ALEPH Collaboration, “ALPHA” internal note 99-087
SOFTWR 99-001

[4] http://cern.ch/pax

[5] CLHEP, A Class Library for High Energy Physics,
http://proj-clhep.web.cern.ch/proj-clhep

[6] An Object-Oriented Data Analysis Framework,
http://root.cern.ch

[7] E. Gamma et al., “Design Patterns”, Addison Wesley, ISBN
0-201-63361-2 (1994)

[8] Software Configuration, Release And Management,
http://spi.cern.ch/cgi-bin/scrampage.cgi

[9] Object-oriented Reconstruction for CMS Analysis,
http://cmsdoc.cern.ch/orca/

[10] P.Murat et al., “Stntuple manual”, CDF internal software
manual (2004)

[11] S. Kappler, ”Higgs Search Studies in the Channel tt̄H with
the CMS Detector at the LHC”, PhD Thesis at University of
Karlsruhe, IEKP-KA 2004/17, part I, 2004.

[12] D. Hirschb ühl, PhD Thesis in preparation, University of
Karlsruhe

