

Developments of Mathematical Software Libraries for the LHC experiments

Lorenzo Moneta

CERN/ PH-SFT

On behalf of LCG SEAL/MathLib team

Outline

- Introduction to the MathLib project
- Requirements for mathematical libraries
- Design for C++ MathLib's
- Tests and validation of existing libraries
- Libraries for fitting and minimization (MINUIT)
- Summary and Conclusions

The MathLib Project

- Project originated from LCG RTAG on Mathematical libraries
- It is part now of the LCG SEAL project
- Project goals are:
 - provide coherent set of Mathematical Libraries to end-users and developers of LHC experiments
 - avoid maintenance burden of similar libraries
- Requirement to use the same libraries in all environments
 - simulation, reconstruction and analysis
 - from C++ and interactively (Python, CINT)
- Development done in collaboration with the LHC experiments and other LCG projects (ROOT)

General Requirements for Math Lib's

- Set of components with as little coupling as possible
- Allow dependency on C++ Standard Library
 - use std::vector and std::complex
- Allow dependency on external products if
 - they provide directly needed functionality
 - meet support and quality standard specified by LCG
- Refrain from duplicating functionality already present in STL
 - vector operations, searching and sorting algorithms, etc..)
- Avoid non mathematical functionality

Math Libraries Contents

- What is the the needed functionality ?
- A good starting point is what CERNLIB offers
 - but skipping what exists already in STL
 - skip also HEP kinematics and simulation

Produced an inventory of functions and algorithms

- group them by related functionality

» follow GSL organization

- with links to GSL, CERNLIB and ROOT documentation
- available on the Web at:
 - » http://www.cern.ch/mathlib/mathTable.html

Inventory of Mathematical Functions and Algorithms

LCG Project | LCG Applications Area

Cemlib writeup | GSL contents | Abramowitz and Stegun | MathLib Project | Project Portal | \$Date: 2004/04/26 11:37:32 \$

Functions and Polynomials	Numerical Methods	Random Numbers and Distributions	Others
 <u>Special Functions</u> <u>Polynomials</u> <u>Function Approximations</u> 	 Integration Differentiation Minimization Root-Finding Interpolation 	 <u>Random Number Generator</u> <u>Random Number Distribution</u> 	 <u>Linear Algebra</u> <u>Differential Equations</u> <u>FFT</u>
Special Functions			
Routines for evaluating Special fu	Inctions		
Bessel Functions of various types	5		
 Regular cylindrical functions 	Bessel J functions of various orders		<u>GSL, Cernlib, R</u>
 Irregular cylindrical functions 	Bessel Y functions of various orders		<u>GSL, Cernlib, </u> R
 Regular modified cylindrical 	Bessel I functions of various orders		<u>GSL, Cernlib, </u> R
Irregular modified cylindrical	Bessel K functions of various orders		<u>GSL, Cernlib, R</u>
 Regular spherical functions 	Bessel j functions of various orders		<u>GSL, Cernlib</u>
 Irregular spherical functions 	Bessel y functions of various orders		<u>GSL, Cernlib</u>
 Clausen function 	Clausen integral function		<u>GSL, Cernlib</u>
Coulomb Wave Function	Wave functions for bound states and scattering solutions		<u>GSL, C</u> ernlib
 Dawson's integral function 	Dawson integral		<u>GSL, Cernlib</u>
 Dilogarithm function 	Dilogarithms for real and complex arguments		<u>GSL, Cernlib</u>
 Complete Elliptic integrals 	Legendre form of the various types of complete Elliptic integrals		<u>GSL, Cernlib</u>
 Uncomplete Elliptic integrals 	Carlson and Legendre form of uncomplete Elliptic integrals		GSL, Cernlib (2)
 Error functions 	Error function (ERFC) and complementary		<u>GSL, Cernlib, R</u>
 Exponential integrals 	Various type of exponential integrals		GSL. Cernlib

C++ MathLib Components

- Mathematical functions
 - Special functions and statistical functions
 - Library of free (stateless) functions
- Function classes
 - Generic function interface
 - Parametric functions, probability density functions (pdf)
 - Support for function operations (addition, composition, convolution)
- Linear Algebra
 - Vector and Matrices classes and their operations
- Algorithms
 - Numerical Integration and Differentiation, Function Minimization, Root Finders, Interpolators, etc...
- Random number generators

C++ MathLib

Mathematical Functions

- Evaluation of functions at a point
 - No need for objects, have a simple procedural API
- Set of free functions in a namespace
 - Approach adopted by C++ standard committee
 - » use same name scheme
 - Advantages are (w.r.t to static function in a class):
 - » Users can extend and add new functions in same namespace
 - » Users can overload them for new type of data
- Library hides detailed function implementation
 - Implementing majority of functions as wrapper to GSL
 - introduce a very small overhead

Example of Free Functions

Special functions (Bessel)

namespace mathlib { double bessel I(double l, double x); double bessel J(double l, double x); double erfc (double x);

Implementation using GSL

```
#include "gsl/gsl_sf.h"
```

mathlib::bessel_I (double l, double x) {
 return gsl_sf_bessel_In (l, x);

- A large variety of use cases (data modeling, plotting) requires additional operations on functions
 - Example: to control the shape of a function will require to access its parameters
- Need for function operations
 - arithmetic operations, composition, convolution
- Functions are also used in various numerical algorithms
 - Need to have a coherent signature
 - Use C++ advantages to simplify life to end-user
 - » Have well defined set of interfaces and base classes

Algorithms

- Algorithms will use abstract function interfaces
 - No direct dependency on the function library
- Algorithms API will be based on abstract functions but also on a generic template function.
 - maximum flexibility, user can pass either
 - » an instance implementing an abstract function
 - » an instance of any object implementing some pre-defined operations: operator(), gradient(), etc..
 - this would avoid virtual function call
- Algorithms can be loaded dynamically as plug-in's
 - design an algorithm interface (e.g. Minimizer interface)

Example: Numerical Integration

Integrator class

- implemented as wrapper to GSL
- have also a method directly passing C function pointers to avoid adapters

```
class Integrator {
```

// generic integration method template < class Function > double integrate (const Function & f, double a, double b);

// specialization for IFunction
double integrate (const IFunction & f, double a, double b);

```
// method using function pointer (same signature as GSL function)
typedef (* CF) (double, void *);
double integrate (CF f, double * params, double a, double b);
```


..... };

- Library with matrix and vector classes
 - use C++ operator overloading to implement vector/matrix operations
- Goal is first to evaluate and review existing packages
 - Performance studies in HEP application environments
- Developed a prototype based on expression templates:
 - Wrapper based on BLAS/LAPACK and GSL and use it for Linear Algebra studies (see later)
 - Have a version based on a customized implementation in MINUIT

Linear Algebra studies

- Measure time spent in operations used in Kalman filter (track state update)
 - Involve multiplication, matrix inversion and transpose
- Compare UBLAS (Boost), BLAS/LAPACK, CLHEP, GSL, ROOT (v. 4)

- Test numerical accuracy and time performances of GSL, NAG and ROOT
 - Compare special functions (Bessel, Gamma, Erf) and some statistical functions (e.g. Chi2 probability)
- Good numerical results obtained from GSL

Tests of random number generators

- Study a palette of generators from GSL
- Apply tests looking for correlation and defects in the random sequence
 - Look for some frequency for correlated effects
 - Look at distances between sequence of points
- All generators considered passed the tests

Status of C++ MINUIT

- MINUIT has been completely re-written in C++
- Not just Fortran -> C++ translation
 - Based on a OO design
 - Set of different classes each performing a well defined task
- Developments are almost complete
- We have same functionality present in the Fortran version:
 - Minimizers:
 - » Migrad, Simplex, Minimize, Scan
 - Error analysis:
 - » Hesse, Minos and Contours
 - Control of Parameters :
 - » fix, set/ remove limits on single and double side
 - » single side limits are NEW, were not in the Fortran version

Evaluation of C++ MINUIT

- Extensive tests performed comparing with Fortran and ROOT version
- Results are very satisfactory
 - Same numerical results
 - Same function calls
 - Small penalty observed only for easy functions
 - » 10% for y=x², slightly more for multidimensional functions
 - no difference for computational expensive functions
- Easy to integrate in external packages
 - interface to ROOT exists
- Used already in CMS reconstruction code

Fitting and Minimization (FML)

- Package for fitting and minimization
- Solve standard fitting problems
 - Chi2, Likelihood (binned and un-binned) fits
 - Provides set of pre-defined model functions

» Gaussian, Exponential, Polynomial, etc...

- Support also for user defined functions
- Defines interfaces for minimization
 - Current implementation uses MINUIT
- Very efficient in terms of performances
- User convenient package on top of MINUIT

Summary

- Started providing support in Math Libs for LHC experiments
 - Inventory of functions and algorithms
- Produced a design for C++ mathematical libraries
- Will start with an implementation based mainly on GSL
- Validation tests of GSL have not shown so far major defects
- Delivered C++ MINUIT with same functionality as in Fortran
- Continue and complete the developments of MINUIT
 - Implement Fumili, specialized minimizer for least-square and likelihood fits
 - Adapt to be easily integrated into new MathLib C++
- Starting providing libraries to experiments
 - and we will work on the received feedback

More Information

Links:

- MathLib project Web pages:
 - ♦ www.cern.ch/mathlib
- MINUIT pages:
 - ♦ <u>www.cern.ch/minuit</u>

with documentation (User Guide and minimization tutorial) and links to download code (can be built easily with configure/make)

Mailing lists:

- forum-mathlib@cern.ch
- forum-minuit@cern.ch
- Acknowledgments:
 - SEAL team members
 - W. Brown, R. Brun, M. Paterno

Back-up Slides

C++ Function Design

- Abstract Function interface
 - **Defines only**: double operator() (double x)
 - Have a 1D and a multidimensional interface
 - > double operator() (const std::vector<double> & x)
- Abstract Gradient function
 - Defines in addition: double gradient (double x)
- Base Parametric function class
 - Has parameters as member
 - » Defines set/getParameters()
 - Not abstract, so derived classes do not need to reimplement all methods
 - Have classes implementing gradient and parameter gradient
- Sets of concrete classes implementing pre-defined functions:
 - Gaussian, Exponential, etc...

Evaluation of existing libraries (2)

Timing performance evaluating special functions

