
Developments of Mathematical
Software Libraries for the LHC

experiments

Lorenzo Moneta
CERN/ PH-SFT

On behalf of LCG SEAL/MathLib team

September 30, 2004 CHEP04 L. Moneta / CERN 2

Outline

 Introduction to the MathLib project
 Requirements for mathematical libraries
 Design for C++ MathLib’s
 Tests and validation of existing libraries
 Libraries for fitting and minimization

(MINUIT)
 Summary and Conclusions

September 30, 2004 CHEP04 L. Moneta / CERN 3

The MathLib Project

 Project originated from LCG RTAG on Mathematical libraries
 It is part now of the LCG SEAL project
 Project goals are:

– provide coherent set of Mathematical Libraries to end-users and
developers of LHC experiments

– avoid maintenance burden of similar libraries

 Requirement to use the same libraries in all environments
– simulation, reconstruction and analysis
– from C++ and interactively (Python, CINT)

 Development done in collaboration with the LHC experiments
and other LCG projects (ROOT)

September 30, 2004 CHEP04 L. Moneta / CERN 4

General Requirements for Math Lib’s

 Set of components with as little coupling as possible
 Allow dependency on C++ Standard Library

– use std::vector and std::complex
 Allow dependency on external products if

– they provide directly needed functionality
– meet support and quality standard specified by LCG

 Refrain from duplicating functionality already
present in STL
‒ vector operations, searching and sorting algorithms, etc..)

 Avoid non - mathematical functionality

September 30, 2004 CHEP04 L. Moneta / CERN 5

Math Libraries Contents

 What is the the needed functionality ?
 A good starting point is what CERNLIB offers

– but skipping what exists already in STL
– skip also HEP kinematics and simulation

 Produced an inventory of functions and algorithms
– group them by related functionality

» follow GSL organization
– with links to GSL, CERNLIB and ROOT documentation
– available on the Web at:

» http://www.cern.ch/mathlib/mathTable.html

September 30, 2004 CHEP04 L. Moneta / CERN 6

MathLib Inventory

September 30, 2004 CHEP04 L. Moneta / CERN 7

C++ MathLib Components

 Mathematical functions
– Special functions and statistical functions
– Library of free (stateless) functions

 Function classes
– Generic function interface
– Parametric functions, probability density functions (pdf)
– Support for function operations (addition, composition, convolution)

 Linear Algebra
– Vector and Matrices classes and their operations

 Algorithms
– Numerical Integration and Differentiation, Function Minimization, Root

Finders, Interpolators, etc…

 Random number generators

September 30, 2004 CHEP04 L. Moneta / CERN 8

C++ MathLib

GSL

Mathematical Functions

C++ HEP Libraries
(CLHEP, ROOT::TMath)

wrap

BLAS, LAPACK, …..

Function classes

Linear
Algebra

Numerical
Algorithms

Random
Number

GeneratorsMinimization
(MINUIT)

Integration Root Finders

InterpolationDifferentiation

to investigate

wrap or
implement

directly

September 30, 2004 CHEP04 L. Moneta / CERN 9

Mathematical Functions

 Evaluation of functions at a point
– No need for objects, have a simple procedural API

 Set of free functions in a namespace
– Approach adopted by C++ standard committee

» use same name scheme
– Advantages are (w.r.t to static function in a class) :

» Users can extend and add new functions in same namespace
» Users can overload them for new type of data

 Library hides detailed function implementation
– Implementing majority of functions as wrapper to GSL
– introduce a very small overhead

September 30, 2004 CHEP04 L. Moneta / CERN 10

Example of Free Functions

 Special functions (Bessel)

namespace mathlib {
double bessel_I(double l, double x);
double bessel_J(double l, double x);
….
double erfc (double x);

}

#include “gsl/gsl_sf.h”

mathlib::bessel_I (double l, double x) {
return gsl_sf_bessel_In (l, x);

}

 Implementation using GSL

September 30, 2004 CHEP04 L. Moneta / CERN 11

Function classes

 A large variety of use cases (data modeling, plotting) requires
additional operations on functions
– Example: to control the shape of a function will require to

access its parameters

 Need for function operations
– arithmetic operations, composition, convolution

 Functions are also used in various numerical algorithms
– Need to have a coherent signature
– Use C++ advantages to simplify life to end-user

» Have well defined set of interfaces and base classes

September 30, 2004 CHEP04 L. Moneta / CERN 12

Algorithms

 Algorithms will use abstract function interfaces
– No direct dependency on the function library

 Algorithms API will be based on abstract functions but also on a
generic template function.
– maximum flexibility, user can pass either

» an instance implementing an abstract function
» an instance of any object implementing some pre-defined

operations: operator() , gradient() , etc..
– this would avoid virtual function call

 Algorithms can be loaded dynamically as plug-in’s
– design an algorithm interface (e.g. Minimizer interface)

September 30, 2004 CHEP04 L. Moneta / CERN 13

Example: Numerical Integration

 Integrator class
– implemented as wrapper to GSL
– have also a method directly passing C function pointers to

avoid adapters
class Integrator {
…..
// generic integration method
template < class Function >
double integrate (const Function & f, double a, double b);

// specialization for IFunction
double integrate (const IFunction & f, double a, double b);

// method using function pointer (same signature as GSL function)
typedef (* CF) (double , void *);
double integrate (CF f, double * params, double a, double b);
……
};

September 30, 2004 CHEP04 L. Moneta / CERN 14

Linear Algebra

 Library with matrix and vector classes
– use C++ operator overloading to implement vector/matrix

operations
 Goal is first to evaluate and review existing packages

– Performance studies in HEP application environments
 Developed a prototype based on expression

templates:
– Wrapper based on BLAS/LAPACK and GSL and use it for

Linear Algebra studies (see later)
– Have a version based on a customized implementation in

MINUIT

September 30, 2004 CHEP04 L. Moneta / CERN 15

Linear Algebra studies

 Measure time spent in operations used in Kalman filter (track
state update)
– Involve multiplication, matrix inversion and transpose

 Compare UBLAS (Boost), BLAS/LAPACK, CLHEP, GSL, ROOT (v. 4)

September 30, 2004 CHEP04 L. Moneta / CERN 16

Evaluation of existing libraries (GSL)

 Test numerical accuracy and time performances of GSL,
NAG and ROOT
– Compare special functions (Bessel, Gamma, Erf) and some

statistical functions (e.g. Chi2 probability)

 Good numerical results obtained from GSL

September 30, 2004 CHEP04 L. Moneta / CERN 17

Tests of random number generators

 Study a palette of generators from GSL
 Apply tests looking for correlation and defects in the random

sequence
– Look for some frequency for correlated effects
– Look at distances between sequence of points

 All generators considered passed the tests

September 30, 2004 CHEP04 L. Moneta / CERN 18

Status of C++ MINUIT

 MINUIT has been completely re-written in C++
 Not just Fortran -> C++ translation

– Based on a OO design
– Set of different classes each performing a well defined task

 Developments are almost complete
 We have same functionality present in the Fortran version:

– Minimizers:
» Migrad, Simplex, Minimize, Scan

– Error analysis:
» Hesse, Minos and Contours

– Control of Parameters :
» fix, set/ remove limits on single and double side
» single side limits are NEW, were not in the Fortran version

September 30, 2004 CHEP04 L. Moneta / CERN 19

Evaluation of C++ MINUIT

 Extensive tests performed comparing with Fortran and
ROOT version

 Results are very satisfactory
– Same numerical results
– Same function calls
– Small penalty observed only for easy functions

» 10% for y=x2, slightly more for multidimensional
functions

– no difference for computational expensive functions
 Easy to integrate in external packages

– interface to ROOT exists
 Used already in CMS reconstruction code

September 30, 2004 CHEP04 L. Moneta / CERN 20

Fitting and Minimization (FML)
 Package for fitting and minimization
 Solve standard fitting problems

– Chi2, Likelihood (binned and un-binned) fits
– Provides set of pre-defined model functions

» Gaussian, Exponential, Polynomial, etc…
– Support also for user defined functions

 Defines interfaces for minimization
– Current implementation uses MINUIT

 Very efficient in terms of performances
 User convenient package on top of MINUIT

September 30, 2004 CHEP04 L. Moneta / CERN 21

Summary

 Started providing support in Math Libs for LHC experiments
– Inventory of functions and algorithms

 Produced a design for C++ mathematical libraries
 Will start with an implementation based mainly on GSL
 Validation tests of GSL have not shown so far major defects
 Delivered C++ MINUIT with same functionality as in Fortran
 Continue and complete the developments of MINUIT

– Implement Fumili, specialized minimizer for least-square and
likelihood fits

– Adapt to be easily integrated into new MathLib C++
 Starting providing libraries to experiments

– and we will work on the received feedback

September 30, 2004 CHEP04 L. Moneta / CERN 22

More Information

 Links:
– MathLib project Web pages:

 www.cern.ch/mathlib
– MINUIT pages:

 www.cern.ch/minuit
with documentation (User Guide and minimization tutorial)
and links to download code (can be built easily with configure/make)

 Mailing lists:
– forum-mathlib@cern.ch
– forum-minuit@cern.ch

 Acknowledgments:
– SEAL team members
– W. Brown, R. Brun, M. Paterno

Back-up Slides

September 30, 2004 CHEP04 L. Moneta / CERN 24

C++ Function Design
 Abstract Function interface

– Defines only : double operator() (double x)
– Have a 1D and a multidimensional interface

» double operator() (const std::vector<double> & x)

 Abstract Gradient function
– Defines in addition: double gradient (double x)

 Base Parametric function class
– Has parameters as member

» Defines set/getParameters()
– Not abstract, so derived classes do not need to re-

implement all methods
– Have classes implementing gradient and parameter

gradient
 Sets of concrete classes implementing pre-defined

functions:
– Gaussian, Exponential, etc…

IFunction

IGradFunction

ParamFunction

GaussianFunction

September 30, 2004 CHEP04 L. Moneta / CERN 25

Evaluation of existing libraries (2)

 Timing performance evaluating special functions

