
DEVELOPMENTS OF MATHEMATICAL SOFTWARE LIBRARIES FOR
THE LHC EXPERIMENTS

M. Hatlo, F. James, P. Mato, L. Moneta, M. Winkler, A. Zsenei,CERN, Geneva, Switzerland

Abstract

This paper describes the activities performed by a work-
ing group formed with the objective to support and develop
mathematical software for the LHC experiments. The goal
is to share common mathematical libraries between the
experiments and the LCG application area projects. We
present the various library components and their design,
with particular emphasis on fitting and minimization, de-
scribing the new object oriented implementation in C++ of
the MINUIT minimization package.

INTRODUCTION

A work package to support and develop mathematical
software libraries for the LHC experiments has been initi-
ated following the recommendations of the Requirements
and Technology Assessment Group (RTAG) of the LHC
Computing Grid project (LCG). This work package is part
of the LCG SEAL project [1], which mandate is to provide
the software infrastructure, basic frameworks, librariesand
tools that are common among the LHC experiments. De-
velopments of mathematical and statistical libraries used
in physics analysis, event reconstruction and simulation
are managed in this project with the goal to provide a
coherent system to end-users and avoid maintenance and
support of various mathematical libraries providing simi-
lar functionality. The activities are coordinated with exist-
ing projects in the high energy physics (HEP) community
providing as well mathematical software libraries, such as
ROOT [2], bringing the needs of experiments and other
software projects together.

C++ MATHEMATICAL LIBRARIES

Inventory of Mathematical Libraries

To address the question of what the needed mathemati-
cal functionality for the HEP community, we have started
looking at what is provided by the Fortran CERNLIB li-
brary [3]. We have also investigated the mathematical func-
tionality present in ROOT [2] and in CLHEP [4] and com-
pared with what is provided by general purpose mathemat-
ical libraries like the open source GNU Scientific Library
(GSL) [5], or the commercial Nag C library [6]. We have
then compiled an inventory of needed mathematical func-
tions and algorithms and made it available online at the
MathLib Web site [7]. For each entry, we reference the
software packages (mainly CERNLIB, GSL and ROOT)
implementing the function or algorithm and we add links

to their documentation. As we will advance implementing
these functions, we will also include links to our imple-
mentation. We plan to add as well links to the results of the
comparison and validation studies we are performing.

Mathematical Library Components

The basic components that constitute the C++ mathemat-
ical libraries, shown in the diagram of Figure 1, are the fol-
lowing:

• Mathematical functions: library of special functions
and statistical functions needed for HEP.

• C++ Function classes: library of classes describing
generic funcitons, parametric functions or probability
density functions.

• Numerical algorithms: library containing the meth-
ods for numerical integration, differentiation, function
minimization, root finders, interpolators, etc..

• Linear algebra: library with vector and matrix
classes and their operations.

• Random number generator: library with collec-
tions of generators and methods for generating ran-
dom numbers according to distributions.

Mathematical Functions

This library includes special functions and other math-
ematical functions used mainly in statistical problems and
needed by the HEP community. The software provides the
means of evaluating a function at a point, satisfying one of
the most common use case. It forms the functional layer
of the system and it is composed of a set of free functions,
with a coherent name schema based on the function names
and grouped together in a common namespace. This design
approach gives the possibility for users of extending the li-
brary by adding or overloading new functions in the same
namespace. Moreover, the underlying implementation is
hided behind and it can be replaced easily when needed.
At the moment, we are planning to implement a large ma-
jority of these functions as wrapper to GSL [5] functions,
which are written in C. If we want to replace them with
a different implementation, this will be transparent for the
user and without modifications on the interfaces. The name
schema used to describe the functions will be the same of
the existing proposal [8] for adding special functions to the
C++ Standard Library.



Figure 1: Schema showing the Math C++ component libraries and their relationships

C++ Function classes

When using numerical algorithms, it is convenient to
have a common way of dealing with the various types of
functions. This library provides the C++ classes and in-
terfaces describing the function types needed by the al-
gorithms. Evaluating a function at a point is a common
use case but not the only one. Use cases exist which re-
quire additional operation on functions, such as control-
ling their shape to model the data in fitting problems or
re-normalizing them in a particular range. Furthermore,
we can exploit, for user convenience, the functionality pro-
vided by C++ to overload operators, to implement arith-
metic operations, function composition and convolution.
We define here a set of abstract interfaces and base classes
to describe the various functions. The abstract function in-
terfaces describe generic functions for the one and multi-
dimensional case. Base classes are parametric functions
which contain as attributes the function parameters and
provide methods to set and retrieve them. They are used
for example in fitting problems to model the data (model
functions). Concrete classes are predefined functions such
as Gaussian, Exponential, Polynomial, etc.., which can
be used, through the implemented function operations, to
compose more complicated functions. This library will be
based on the Mathematical Functions layer.

Numerical Algorithms

This software component contains numerical methods
for solving mathematical problems needed by the HEP
community. These methods include numerical integration
and differentiation, function minimization, function ap-
proximations, root finders, interpolation, differential equa-
tion solvers and Fast Fourier transforms. The linear algebra
algorithms are not considered here since they are included
in the linear algebra library. Some of these numerical meth-
ods are rather complex and they constitute a library per
se, like the MINUIT C++ library for function minimiza-
tion. The various algorithms make use of the abstract func-

tion interface. For maximising efficiencies in CPU perfor-
mances and flexibility of usage, generic functional inter-
faces to the algorithm exist and they are based on template
methods or on function pointers. Algorithms hide using
well defined interfaces their implementations and they can
be loaded at run time using the plug-in manager. This ca-
pability is provided for example in the fitting library (FML)
which will be described in the following section. Some of
the algorithms are being implemented as C++ wrappers (or
adaptors) to the GSL [5] C algorithms, while others like
MINUIT are re-implemented from scratch in C++.

Linear Algebra

In the case of linear algebra, it is convenient to have C++
matrix and vector classes and implement, through opera-
tor overloading, the arithmetic operations. It is essential
to have maximum performances, since linear algebra algo-
rithms are used extensively in event reconstruction where
CPU performances play a crucial role. Our first goal here,
before developing a new linear algebra library, is to eval-
uate the existing ones. We study their functionality and
performances in realistic HEP test cases, such as track re-
construction. For the packages written in C (GSL [5]) or
Fortran (BLAS, LAPACK [9]), we have developed a thin
C++ wrapper layer with matrices and vector classes based
on expression templates. We measure the CPU time spent
in the combination of matrix operations, which are simi-
lar to those applied in the Kalman filter. We have com-
pared, varying the matrix sizes, the following packages:
uBLAS from Boost numerics [10], BLAS/LAPACK [9],
CLHEP [4], GSL [5] and the new linear algebra package
from ROOT [11]. For the specific case of track fitting, ma-
trix with sizes up to 5x5, the package performing best is
CLHEP, while for all larger sizes ROOT wins.

Random Number Generators

Random numbers are used in many HEP applications,
like Monte Carlo simulations. Various libraries already ex-



ist which provide a large variety of generators and means to
generate numbers according to defined distributions. The
current studies focus on evaluating the quality of the exist-
ing random number generators existing of the present soft-
ware packages.

VALIDATION STUDIES OF GSL

The performance and the numerical accuracy of some
parts of GNU Scientific Library (GSL) [5] have been tested
and validated comparing with other numerical software li-
braries. Two new tests for randomness have been proposed
and applied to the main generators of GSL. We have also
done tests for the numerical results and the performance of
some special functions and distributions, the numerical in-
tegration algorithms and the GSL linear algebra package.
The tests and their results are described in this report [12].

Tests of mathematical functions

A comparison of numerical results and timing perfor-
mance of mathematical functions typically used in HEP
applications is done. The special functions being tested
are the Bessel functions, Gamma, logarithmic Gamma and
incomplete Gamma functions and the Error function. We
test in addition some statistical functions, such as the Lan-
dau distributions, the Chi2 distribution and its probability.
We compare the numerical values obtained using the al-
gorithms from GSL [5], ROOT/TMath [2] or NagC [6].
Varying the input values, we study the relative and abso-
lute difference obtained with respect to the GSL values and
compare it with the estimated error from GSL, which is
provided by the algorithm. Figure 2 shows for example
the results obtained for the cylindrical Bessel function. In
addition, we perform timing tests, measuring the amount
of CPU time to evaluate the functions for the three dif-
ferent libraries, averaging on the input values. In general,
we have observed that the results obtained by GSL are in
agreement with those obtained by NagC and often at the
level of the expected numerical accuracy. On the other end
GSL is found to be the worst in time performances com-
pared to both NagC and ROOT, taking in same cases up to
three times more to call the algorithms.

Tests of Random number generators

Two new tests have been designed and applied to ran-
dom number generators. The first test, Frequency test, fill a
d dimensional space with points formed from a sequence of
random numbers. The frequency is found in a small volume
of the space. This frequency should not be correlated with
the frequency in other volumes of the space. The second,
Orbit test, arranges a sequence of random numbers into
multidimensional points. We look for points that are close
to the first point. For these points we calculate the distance
between the next point and the second point. There should
be no correlations between the two distances. We apply the
tests to eight of the most used generator of GSL, including

x
0 1 2 3 4 5 6 7 8 9 10

|f
(x

)-
g(

x)
|/

f(
x)

-1610

-1510

-1410

-1310

-1210

-1110

-1010

-910

-810

-710

Bessel I0

TMath
Nag
Error

Figure 2: Relative difference from GSL - NagC and GSL
- ROOT TMath and estimated error for the modified cylin-
drical Bessel function of first order,I0(x)

Mersenne Twister and RanLux. All these generators pass
the two tests. The only generator failing is the Park and
Miller Minimal Standard algorithm gslrng minstd which
is known to generate points distributed in hyper-planes and
is used to verify the test procedure.

FITTING AND MINIMIZATION

A major project activity is related to fitting and mini-
mization, which is heavily used in physics analysis. Multi
parameters fit to large set of data are commonly used to
estimate the parameter values and their errors. Minimiza-
tion algorithms are therefore needed to find the numeri-
cal solution to the fitting problems. A very popular min-
imization package used by high energy physicist is MI-
NUIT [13], which in addition to minimization algorithms,
contains methods for analyzing the solutions and estimate
the parameter error correlation matrix. These combined ca-
pabilities are very difficult to find in other minimizers ex-
isting outside HEP. There is therefore a strong requirement
to have the MINUIT algorithms available in the new C++
mathematical libraries. In addition to MINUIT, we provide
also a generic fitting library, FML, which facilitates the us-
age of minimizers in standard fitting problems.

C++ MINUIT

MINUIT has been rewritten in C++ providing and en-
hancing all the functionality already existing in the original
Fortran package. The effort has been directed and super-
vised by the original author of MINUIT. The new pack-
age has been redesigned in an object oriented style and im-
plemented using standard C++. It works on all the major
platforms and it is independent of any external packages.
The profits from basing on an object oriented design are an
increased flexibility, easy maintainability in the long term
and opening to extensions (new algorithms, new function-
ality, changes in user interfaces). The current released ver-
sion of C++ MINUIT provides already all the functionality
present in the Fortran version, containing the MIGRAD,
SIMPLEX and MINIMIZE minimizers, HESSE, MI-
NOS and CONTOURS for analysing the solutions and



methods to control the input parameters (fix, release and set
limits). In addition, the new C++ version has the function-
ality to set one side parameter limits. The most important
goals of MINUIT C++ are to achieve a numerical accu-
racy equivalent to the Fortran version and to have equiva-
lent computational performances. Extensive minimization
and comparison tests have demonstrated that these goals
have been reached. There is a small performance penalty
only when minimizing functions trivial to compute. For the
typical cases of computational expensive functions, where
good performances are required, the differences observed
in CPU time with respect to the previous version are negli-
gible.

This new package is starting to be used by physics users
and it is already being integrated in existing analysis tools
and in the reconstruction code for the CMS experiment.
We are adding now a new minimization algorithm, FU-
MILI,inside the package. FUMILI is a specialized algo-
rithms for least squares and likelihood minimization ad it
requires different input values. Thanks to the object ori-
ented design, the integration of FUMILI is going to be
possible without requiring a large extra effort. The new
classes, which need to be implemented, are easily identi-
fied and the amount of extra code necessary to support the
enhancement is minimal.

FML

Since the majority of cases, where MINUIT is used in
the HEP community, is to solve fitting problems, we pro-
vide in addition a package for performing fits based on the
minimization (maximization) of standard Chi2 or Likeli-
hood functions. The user does not need to write the ob-
jective function to be minimized, but needs to supply only
the input data points and the function to model the data.
The objective function to be minimized is then constructed
automatically by the library with particular care on per-
formances. The package supports binned and unbinned
fits and provides a set of pre-defined model functions such
as Gaussian, Polynomials or Exponentials, which can be
added together. FML defines also interfaces for minimiza-
tion, currently implemented using the MINUIT minimiz-
ers. Additional minimizers from external packages, such
as GSL or the Nag C library can be added and, through a
plug-in manager, loaded at run time. The current release
is used to implement the AIDA fitting interfaces for the PI
project [14]. The next steps are to provide Python (and
ROOT CINT) binding to FML to be able to use it in inter-
active applications. The package will also be integrated and
re-designed to be consistent with the new developments in
the C++ function class library.

CONCLUSIONS

A work package, as part of the SEAL LCG project, is
formed to provide support and develop mathematical soft-
ware libraries for the LHC experiments. We have pro-
vided a Web site containing an inventory of the required

mathematical functions and algorithms with references to
the corresponding implementation and documentation. We
have produced a design for new C++ mathematical libraries
which implement the set of identified functions and algo-
rithms. We are starting now implementing them using the
GNU Scientific Library [5]. Extensive validation and test
studies have confirmed the numerical quality of GSL and
proofed so far, for the selected algorithms, that is suitable
for computation required in the HEP community. We have
also delivered a new version of the popular minimization
package MINUIT in C++ with same functionality, perfor-
mance and quality as the original version. A user conve-
nient fitting package using MINUIT is also provided. The
integration with the LHC experiment software is initiated
and the libraries are started to be used by physicists work-
ing not only for the LHC community (experiments and
LCG software projects). We collaborate not only with the
LHC community, but also with the wider HEP community
including other laboratories and institutes. We are also co-
operating with the ROOT project with the aim to provide a
common mathematical software.

ACKNOWLEDGEMENTS

We would like to thank W. Brown, R. Brun, V. Inno-
cente, P. Kunz, E. Myklebust, J. Mosciki, E. Offermann,
M. Paterno, T. Todorov for having contributed to the devel-
opments or having provided feedback on the mathematical
software libraries presented in this paper.

REFERENCES

[1] The LCG SEAL project, http://www.cern.ch/seal

[2] The ROOT project, http://root.cern.ch

[3] The CERN Program Library,
http://wwwasdoc.web.cern.ch/wwwasdoc/cernlib.html

[4] CLHEP, http://www.cern.ch/clhep

[5] The GNU Scientific Library,
http://www.gnu.org/software/gsl

[6] The Numerical Algorithm Group (Nag) C Library,
http://www.nag.co.uk/numeric/cl/CLdescription.asp

[7] MathLib Web site, http://www.cern.ch/mathlib

[8] W. Brown and M. Paterno, A proposal to Add Mathematical
Special Functions to the C++ Standard Library,
http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1422.html

[9] BLAS, http://www/netlib.org/blas
LAPACK, http://www.netlib.org/lapack

[10] uBLAS, http://www.boost.org/libs/numeric/ublas/doc/index.htm

[11] The ROOT Linear Algebra, contrib. 303 to this conference

[12] M. P. Hatlo, Validation studies of software libraries,
http://seal.cern.ch/documents/mathlib/thesismarte.pdf

[13] F. James, MINUIT, CERN Program Library Writeup D506,
http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html

[14] PI, http:://cern.ch/pi and contrib. 204 to this conference


