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Abstract

The Multi-Vertex Fitter is an algorithm that fitsn ver-
tices simultaneously, allowing competition between the
vertices for the tracks. In each vertex fit, each track is
weighted according to its distance to the current vertex po-
sition. The method is adaptive in the sense that the weight
with respect to a vertex depends also on the other vertices
that compete for the same track. This paper presents the
implementation and verification of the method in ORCA
and outlines future developments and possible use cases.

INTRODUCTION

The robustification of vertex estimation is an important
issue in the reconstruction of secondary vertices. In or-
der to have the optimal separation between the primary
and one or several secondary vertices, it is essential that
neither of them, in particular the secondary ones, are dis-
torted by wrongly assigned tracks. A recent development is
the Adaptive Vertex Fitter (AVF, [1]) which automatically
down-weights outlying tracks by means of soft assignment.
For each track assigned to the vertex a weight is computed
which is based on the distance of the track from the vertex.
The vertex estimation is iterated until the weights stabilize.

The Multi-Vertex Fitter (MVF, [2]) is very similar to the
AVF in that it has a soft assignment with a weight func-
tion that is a generalization of the AVF weight function.
The difference to the AVF is that several vertex candidates
compete for the available tracks. Thus the (soft) assign-
ment of a track may change from vertex to another one in
the course of the iterations. For the special case of a single
vertex candidate the MVF reduces to the AVF.

THE FIT

The fitting procedure is iterative and can be described as
follows:

• The user supplies reconstructed tracks (parameters
and covariance matrices), initial positions of vertex
candidates, and optionally initial assignment probabil-
ities between tracks and vertices.

• Then the following two steps are repeated until con-
vergence:

1. Fit all vertices, using the assignment probabili-
ties as track weights.

2. Recompute the assignment probabilities using
the most recent vertex positions.

In each iteration, each vertex fit is a reweighted least-
squares estimator, which can be computed for example by
a Kalman filter.

THE WEIGHT FUNCTION

Assume that there aren tracks to be fitted tom vertices.
The weight of vertexj with respect to tracki is given by

wij =
exp(−χ2

ij/2 T )
exp(−χ2

cut/2 T ) +
∑m

k=1 exp(−χ2
ik/2 T )

χ2
ij is the χ2-distance between tracki and vertex candi-

datej. Note thatχ2
ij is computed using the original track

weight. χ2
cut is a cutoff which suppresses tracks that do

not fit to any of the vertices.T is a temperature parameter
which is lowered in the course of the iterations (annealing).
This helps in finding the globally optimal solution of the as-
signment problem. The natural final value ofT is 1. If hard
assignment is desired,T should be lowered close to 0.

Figure 1 shows the weight of a track with respect to a
vertex as a function of theχ2-distance to the vertex, both
without competition from other vertices and in the presence
of a single competing vertex.
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Figure 1: Weight of a track with respect to a vertex as a
function of theχ2-distance to the vertex. The cut is at
χ2=16. Solid blue line: no competing vertex; dashed green
line: one competitor with aχ2=9 w.r.t. the track; dashed-
dotted red line: one competitor with aχ2=3 w.r.t. the track.



IMPLEMENTATION AND VERIFICATION
STRATEGY

The algorithm was implemented in ORCA [3], re-using
many basic classes of the existing Kalman Filter and the
AVF implementations. Effectively, the MVF consists of
several parallel reweighted Kalman filters.

The verification was done using theVertex Gun [2] de-
veloped for ORCA. The Vertex Gun is a fast simulation tool
that directly generates “reconstructed” tracks from simu-
lated tracks by adding random noise, bypassing event gen-
eration, detector simulation, and track reconstruction. Us-
ing the vertex gun has the double advantage of speed and
perfect knowledge of the track errors.

The verification sample consists of events with two ver-
tices. Five tracks are attached to the primary vertex at
(0,0,0). The tracks form a “jet” with total jet momentum
	ppr=(0,25,25), and opening angle=0.5. A secondary vertex
is positioned two millimeters from the primary vertex. It
has three tracks, jet momentum	psec=(-15,0,20), and open-
ing angle=0.5. All tracks are “perfectly reconstructed”,
i.e. the errors are Gaussian and correctly described by the
covariance matrices attached to the tracks.

Before vertex reconstruction the events are degraded in
the following manner. The track of the primary vertex that
is most compatible to the secondary vertex is selected, and
vice versa. Those two tracks are moved to the “wrong”
vertices — the primary track is assigned to the secondary
vertex and vice versa (Figure 1). These two track bundles
with one mis-associated track in each bundle are the input
to the MVF.
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Figure 2: MVF code verification: Track swapping

RESULTS

We have compared the MVF to the AVF and to the
Kalman Vertex Fitter (KVF). The most important indicator
of the quality of vertex reconstruction is the resolution of
thedistance between the two reconstructed vertices, i.e. the

decay length of a short-lived particle connecting the two
vertices.

The KVF and the AVF cannot recover the mis-associated
tracks. The KVF estimate (Figure 3, top) shows a huge
bias, because all tracks enter the fit with the same weight.
The AVF (Figure 3, center) down-weights the outliers, but
does not use the tracks that are associated to the wrong
track bundle. Its estimate is therefore unbiased, but the dis-
tribution has tails, and resolution is worse than the one of
the MVF (Figure 3, bottom).
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Figure 3: Flightpath distributions for the different fitters.
The dashed blue line denotes the true value.



It is instructive to directly compare the assignment prob-
abilities of the AVF and the MVF. The table in Figure 4
shows 10000 events with two vertices and eight tracks, re-
sulting in 80000 correct track-to-vertex associations (“ in-
liers” ) and 80000 wrong associations (“outliers” ). It can be
seen that both algorithms almost always identify the out-
liers. AVF fails to identify only three outliers; MVF assigns
about 30 tracks to the wrong vertex. In the case of inliers an
ideal AVF can only do right in 60000 cases; 20000 tracks
are mis-associated from the very beginning and cannot be
recovered. It can be seen that the AVF comes very close
to the theoretical limit. Only about 450 inlying tracks (less
than one percent) are down-weighted when they should not
be. The MVF performs similarly with respect to its own
theoretical limit, only its theoretical limit is much higher,
namely 80000. About 400 tracks have a weight close to
zero where the right weight would be one or close to one.
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Figure 4: Comparison of the assignment probabilities,
MVF versus AVF. Bold: correct track-to-vertex associa-
tions; italic: wrong track-to-vertex associations.

FUTURE DEVELOPMENTS

An evaluation of the MVF in terms of physics, especially
b-tagging, is under way. The preliminary results are very
encouraging.

A short term development of the MVF will be to in-
troduce the possibility of having “hard assigned” tracks,
i.e. tracks that are associated to one specific vertex, the as-
sociation being in a “ frozen” state. This additional feature
can be used to exploit knowledge that comes from external
sources. As a longer term development a generalization
of these “hard assigned” tracks seems to be desirable. We

believe it would be useful to implement a framework for
any kind of constraints, be it on the tracks, its weights, or a
quantity related to the vertex. A way to achieve this could
be to interact with the kinematic package [4]. This package
implements kinematic constraints via the Lagrange multi-
plier formalism.
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