
Automated Tests in NICOS Nightly Control System

A. Undrus∗, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

Software testing is a difficult, time-consuming process
that requires technical sophistication and proper planning.
This is especially true for the large-scale software projects
of High Energy Physics where constant modifications and
enhancements are typical. The automated nightly testing is
the important component of NICOS, NIghtly COntrol Sys-
tem, that manages the multi-platform nightly builds based
on the recent versions of software packages. It facilitates
collective work in collaborative environment and provides
four benefits to developers: repeatability (tests can be ex-
ecuted more than once), accumulation (results are stored
and reflected on NICOS web pages), feedback (automatic
e-mail notifications about test failures), user friendly setup
(configuration parameters can be encrypted in the body of
test scripts). The modular structure of NICOS allows plug-
ging in other validation and organization tools. NICOS
supports tests of different granularity level and purpose.
The low level structural tests reveal inconsistencies in pack-
age configuration and bugs localized in components and in-
terfaces. The results for these tests are published for each
package of the software project. The integration tests find
bugs at levels of users scenarios and NICOS generates the
special web page with their results. The NICOS tool is
currently used to coordinate the efforts of more than 100
developers for the ATLAS project at CERN.

INTRODUCTION

The software products for High Energy Physics are of-
ten responsible for generation, selection, and analysis of
large datasets. If left unchecked, errors can easily prop-
agate through all stages of a research cycle. Thoroughly
organized testing requires substantial resources but allows
to avoid more costly repairs in data production. The auto-
mated nightly builds and tests become a major component
in the collaborative organization of High Energy Physics
projects. The extensive nightly testing allows to prepare
the software releases of high quality that can be promptly
validated and applied for research tasks.

NICOS [1] is a versatile nightly build tool that was orig-
inally created for the software development in ATLAS [2]
experiment. It provides a framework for code development
and tests of different scopes and types. NICOS operates on
UNIX-like platforms and can work with external release
management and test tools, such as CMT [3], QMTest [4].

∗ undrus@bnl.gov

The NICOS tool is included in the tool library of the LHC
Computing Grid Project [5].

NICOS DESIGN

NICOS [1] is the nightly build system that

• provides options for version management and number
of releases in a cycle,

• builds the software releases,
• performs testing,
• informs programmers about results with dynamic web

pages and personal e-mails.

It is a portable PERL based tool with the modular orga-
nization shown in Fig. 1. The modules are able to serve
as interfaces to external tools such as code repositories, test
and release management tools. NICOS automatically posts
the information about the progress of nightly builds, identi-
fies compilation problems, determines the outcome of tests,
and creates the web pages with build and test results. For
faster feedback the e-mail notifications about compilation
and test problems can be automatically distributed to re-
sponsible developers.

NICOS Organization

Packages
Database

Packages
Database

Build
Results

Build
Results

Tag
Collector

Automatic
e-mails

Unit Testing

NICOS

Control

System

NICOS

Control

System

Tests
Database

Tests
Database

CVS
Repository

Code
Checkout

CMT Release
Build

Error
Analysis

Int. Testing QA Testing

Figure 1: NICOS modular organization.

NICOS is easy to use for both administrators and soft-
ware developers. The NICOS project configuration is
stored in a single XML file named nicos cache. The steps
of building process is associated with its markup tag. Ev-
ery tag consist of a tag name, sometimes followed by an



optional list of tag attribute. The markup tag is followed
by commands, including environment definitions, needed
to be executed at the step. The versions of packages for
the nightly builds can be specified in the NICOS pack-
ages database file or supplied by an external tool. Another
NICOS database stores information about tests names and
locations. NICOS databases are text files that can be easily
modified.

ATLAS software releases comprise about 1000 pack-
ages. The following external tools are used for their man-
agement and interfaced to NICOS:

• ATLAS Tag Collector [6] is the web interfaced
database application. Developers are able to interac-
tively select the tags from ATLAS CVS repository for
the nightly releases. NICOS retrieves the list of pack-
ages versions from the Tag Collector database before
the build starts.

• CMT [3] is the configuration management tool that
defines the conventions for structuring software re-
leases and describes the package properties, con-
stituents, and dependencies. In particular, it defines
the build and run-time environment for ATLAS soft-
ware releases.

In addition, about 10% of the ATLAS offline software code
is generated automatically through NICOS integration with
the NOVA database [7] storing 30K parameters for the de-
tector description. NICOS supports the automatic code
generation of more than 300 NOVA objects classes for a
persistent data access in the simultaneous parallel software
builds and automatic nightly tests of the NOVA database
update procedures.

TESTING FRAMEWORK

NICOS Control Tool provides a framework for tests of
different manners and levels of focus as shown on Fig. 2.
In NICOS organization the separate modules are responsi-
ble for running tests of different types. In this section the
NICOS capabilities are illustrated by the concrete exam-
ples from the organization of ATLAS nightly builds.

• Although the verification of compilation results is not
a test, the early detection of defects in compilation and
linking is important for the decision on further testing.
NICOS checks for compilation errors and publishes
results immediately after completion of make and be-
fore the testing begins.

• Quality Assurance (QA) tests are usually performed
without the running the system. They evaluate the
code design, organization, and documentation. In
ATLAS nightly builds the code checking tool ver-
ifies the description of package properties in CMT
requirements files, in particular the consistency of
packages dependencies.

Verification of 
compilation/linkingRELEASE

SYSTEM

PACKAGE

COMPONENT/UNIT

Unit Tests

QA
(Configuration,

Coding Standards)

Integration Tests

Figure 2: The types and scopes of tests. The tests of one
type can vary in focus.

• Unit tests are often based on the structural properties
of the source code and applied to the individual soft-
ware components (such as C++ classes). The helper
tool for unit testing of C++ programs, CppUNIT [8] is
integrated in CMT environment of ATLAS releases.
This tool provides the common test driver for all test
cases. The driver allows to run tests automatically and
get the summary. Unit tests can sometimes be focused
on the properties of the components collections, such
as the packages in a software release. In ATLAS con-
trol framework ATHENA [9] software uses the pro-
vided common services (job configuration, data store,
message streams etc.). Therefore the tests focused on
package functionalities require the operational core of
the framework. NICOS allows users to decide how to
classify such tests (unit or integration). The results of
QA assurance and unit tests are summarized for each
package of a release.

• Integration tests show that the major systems of the
software release work well and communicate with
other systems successfully. NICOS supports the ba-
sic functionalities for integration testing: organization
tests in suites, search for test scripts in specified ar-
eas of the release, preliminary evaluation of results,
and publishing the separate web page summary. In
case of large software systems the external tools can
be plugged in for extension of these functionalities.
In ATLAS nightly builds QMTest [4] tool is used for
ATLAS integration tests organization and validation.
It supports the regression evaluation that compare the
output of the current test with previous (or known) val-
ues. The tests are arranged in suites. The suite usually
includes the tests related to the specific system of a re-
lease. QMTest saves the test results for further inspec-
tion with the graphical or command-line interface.



NICOS relies on the configuration management tool for
driving QA and unit tests in the packages of a release. In
ATLAS software release these tests are performed by make

command with special targets. CMT tool is responsible
for broadcasting these make commands to the packages.
Integration tests are supposed to be represented by scripts
with certain suffixes that could be run in the standard en-
vironment of the release. NICOS offers three options for
description of the test scripts locations:

• Tests scripts are located in the single directory that is
indicated in the NICOS configuration file.

• Test scripts are selected from the specifically named
directories of packages (e.g. test). The directory
name is indicated in the NICOS configuration file.

• The names of tests and locations are indicated in
NICOS tests database file.

NICOS verifies tests results by checking the exit value
returned by the test executable (should be zero for success)
and by searching for certain text patterns in the test output.
There are two levels of alarm: warning and error. The pat-
terns of three types can be specified in nicos configuration
file for each type of tests:

• Success pattern is required in the output of successful
test. The absence of success pattern is an error sign.

• Warning pattern indicates “small” problems.

• Error pattern indicates “larger” problems.

Additional methods of test evaluation, such as regression
testing and histogram comparison, can be added with ex-
ternal tools.

The packages with warnings or errors are highlighted
with yellow and red colors on the NICOS web pages. The
e-mail notification can be send to the authors of these pack-
ages if desired (both warnings and errors or only errors can
trigger messages). The results on the web page with the in-
tegration test summary are similarly marked. The contact
persons for the integration tests are listed in the NICOS test
database file. The developers can personalize the test con-
figuration by including the configuration parameters in the
specially marked lines of the integration test scripts:

• Additional success, warning, error patterns.

• Additional e-mail addresses for notification.

• Name of test suite.

Sometimes minor modifications or bug fixing are per-
formed for the software release that do not require a re-
build. The modular organization of NICOS allows to re-
peat tests and refresh the documentation skipping all other
steps of the nightly builds.

STATUS AND PLANS

NICOS nightly builds are now widely used for the prepa-
ration of ATLAS stable software releases. The quality of
the releases is verified by QA tests and 35 integration tests.
The long term plans center around improving web page ap-
pearance and better control of test jobs (e.g. control of the
output size of a test).

CONCLUSIONS

The NICOS nightly control tool provides a framework
for tests of different types: quality assurance (or static),
unit, integration. NICOS contains the mechanisms for the
evaluation of test results which can be extended by plug-
ging in the external tools. The tests results are immediately
delivered to developers via automatic e-mails and NICOS
web pages.

ACKNOWLEDGMENTS

The author wishes to thank members of the ATLAS Soft-
ware Infrastructure team, the LCG SPI group and Physics
Applications group at BNL for many valuable advices and
useful discussions

REFERENCES

[1] A.Undrus, CHEP’03, La Jolla, USA, 2003, eConf C0303241,
TUJT006 [hep-ex/0305087]. The NICOS home page is
http://www.usatlas.bnl.gov/computing/software/nicos/index.html

[2] http://atlas.web.cern.ch/Atlas

[3] http://www.cmtsite.org

[4] http://www.codesourcery.com/qmtest

[5] http://lcgapp.cern.ch/project

[6] S. Albrand, “The Tag Collector. A Tool for Atlas Code Re-
lease Management”, CHEP04 contribution

[7] A. Vaniachine et al, CHEP’03, La Jolla, USA, 2003, eConf
C0303241, MOKT006 (2003) [cs.db/0306103]; paper 212,
these proceedings.

[8] http://sourceforge.net/projects/cppunit

[9] ATLAS software archirecture web page
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture


