
IGUANA INTERACTIVE GRAPHICS PROJECT:
RECENT DEVELOPMENTS

G. Alverson, G. Eulisse, S. Muzaffar,
I. Osborne, L. Taylor, L.A. Tuura,

Northeastern University, Boston, USA
Abstract

This paper describes recent developments in the
IGUANA (Interactive Graphics for User ANAlysis)
project. IGUANA is a generic framework and toolkit, used
by CMS and DØ, to build a variety of interactive applica-
tions such as detector and event visualisers and interactive
GEANT3 and GEANT4 browsers.

IGUANA is a freely available toolkit based on open-
source components including Qt, OpenInventor (Coin3D)
and OpenGL and LCG services.

New features we describe since the last CHEP confer-
ence include:

• multi-document architecture;
• user interface to Python scripting;
• 2D visualisation with auto-generation of slices and

projections from 3D data;
• per-object actions such as clipping, slicing, lighting or

animation;
• correlated actions (e.g. picking) for multiple views;
• production of high-quality and compact vector

postscript output from any OpenGL display, with sur-
face shading and invisible surface culling (together
with the gl2ps project).

We compare the IGUANA rendering, memory perfor-
mance, and porting issues for various platforms including:
Linux on x86, Windows, and Mac OSX with its native
Quartz-Extreme rendering system.

INTRODUCTION

IGUANA defines a generic object model and a frame-
work for interactive 2D and 3D visualisation. It provides
a number of services and tools to generate and manipulate
those objects and to manage user interactions. IGUANA is
based on the CMS build system, SCRAM [1]. IGUANA
development is driven mostly by user requests. IGUANA
object model extensively used by the CMS visualisation
framework [2].

The enhancements to IGUANA detailed in this paper
were, in the main, developed either due to feedback from
users concerning the manipulation of complex scenes or
for the requirement to display multiple views simultane-
ously. Other enhancements were proposed in the original
IGUANA design [3], but have taken some time to imple-
ment in a performant manner.

Overall, the adoption of a multiple document interface
structure with centralized scene control has provided a con-

siderably more flexible and useful visualisation framework
for use with a variety of visual tasks.

Figure 1: 2D X-Y view of the CMS detector and the event.

MULTI DOCUMENT ARCHITECTURE

With the release of version 5, IGUANA Studio under-
went a face lift. It now takes advantage of Qt toolkit fea-
tures such as dockable widgets and workspaces to provide
a multi-document enabled graphical user interface.

It is now possible to create different views (e.g. 2D, 3D,
Lego) of the same model or even to have different models
observed in different ways through different views. The
GUI is now fully customizable with mouse: all the panels
and toolbars can be rearranged using drag and drop. The
architecture is highly modular and takes full advantage of
SEAL [4] plugins,e.g. if you only want a 3D view the 2D
one is not loaded and load time and runtime resources are
reduced.

IGUANA also provides services to manage context
switching between one views so that the only controllers
exposed are the ones relative to the current view. A simple
framework for embedding external custom Qt widgets has
also been added.

By default IGUANA provides the following views:

• 2D View: a 2D view where every object has been
sliced by a plane: XY, ZX, or ZY;



Figure 2: DØdetector and the event. Multi document interface with various views.

• 3D View: the usual 3D view where a detector geome-
try and event are shown in the 3D space;
• Lego View: allows the display of Lego plots associ-

ated to some of the twigs;
• Open Inventor View: displays a generic .iv file as a

separate twig tree;
• Python Shell: opens an interactive python [5] shell.

2D MODEL

IGUANA supports 2D views where objects can be
grouped and stacked or layered as one would expect from
any 2D drawing system. The 2D views use a scene graph
of arbitrary-precision vector surfaces with lighting and ma-
terial properties like the 3D views.

Object representations for the 2D view can be generated
in one of three ways. The default is to generate the 2D rep-
resentation by slicing the object’s 3D representation with
an arbitrary plane, such as the X-Y or Y-Z plane. Alter-
natively the 3D object can be retained untouched but dis-
played squashed (rendered without perspective) into a 2D-
layer.

Finally, when neither of the preceding solutions is sat-

isfactory, a truly custom 2D representation can be created.
However much of the geometry and event data can typi-
cally be handled by one of the two automatic solutions.

The 2D slicing uses a constructive solid geometry algo-
rithm which performs a boolean AND operation on the 3D
object and an infinite plane. The algorithm uses as a hy-
brid BSP-Tree and Octree representation to calculate the
2D surface the 3D object cuts from the plane. While this
algorithm is still experimental and being optimised, it is
already able to address the vast majority of 3D-to-2D con-
versions; it is currently unable to handle surfaces with ill-
defined orientation. The same algorithm could also be eas-
ily applied for any generic 3D-3D boolean operation.

CONTROL CENTRE

The Control Centre provides a central set of widgets to
control in a consistent way many of the aspects of dis-
playing visual information inside an IGUANA application.
Based on a modular framework where different control cat-
egories can be hosted, it exposes through icons only those
control categories which were registered for a particular
view. A hierarchical organization makes it easy to navigate



Figure 3: CMS detector and the event. Multi document interface: various views, python shell.

for the user.
Different categories are available in IGUANA for clip-

ping, slicing, lighting, pre-defined view points, and mag-
netic field manipulation. There are in addition categories to
customize the application and viewer. The print category
allows customization of the GL2PS [6] vector postscript
printing, e.g. enabling or disabling background printing,
best root finding, and occlusion culling.

VECTOR POSTSCRIPT

Vector postscript printing through the GL2PS C library
(an open source project) has been improved by the addition
of 2D occlusion culling and a simple best root finding al-
gorithm. The 2D occlusion culling algorithm uses the 2D
BSP culling tree to drop the hidden primitive and has been
optimized to work faster and use less memory. Depending
on the scene graph and view point, these improvements can
make the vector postscript output file 99.9% smaller than
previous versions. Support for 2D bitmap marker printing
(such as those produced by an SoMarkerSet) is now also
available.

All these improvements have been contributed back to
the GL2PS project and are available in GL2PS Version
1.2.2.

IGUANA AND PYTHON

IGUANA was not originally designed with the intention
of exposing a scripting interface. The advantages of such

an approach in regard to inter-operability with other soft-
ware, however, has led us to adapt Python into IGUANA.
In particular Python seemed to be the natural choice for
mainly three reasons:

• It is widely available, open source and with many con-
tributors
• It is object oriented and has a simple syntax.
• It is very easy to integrate with other languages, C++

in particular.

Moreover, in the case of IGUANA, the choice of Python is
almost the unique one, since CMS simulation and recon-
struction software already exposes a Python interface.

The Python environment in IGUANA is made up three
components:

• a basic service providing access to the Python envi-
ronment from C++,
• a framework for the creation of Python bindings,
• a Qt GUI to access the Python command-line from the

IGUANA Studio Environment.

The scripting service provides access to the Python in-
terpreter by wrapping the Python C API into C++ classes.
It is possible in this way to execute a Python script from
C++. The framework also allows the developer to ac-
cess Python objects created within the Python environment
within C++, provided that they are instances of classes
whose base classes are actually C++ pure abstract classes.



The framework for creating Python bindings is a set of
makefiles to be used within the SCRAM build environment
which allows the developer to wrap their C++ classes and
functions so that they are accessible from C++ as well. It is
based on boostpython and a tool called Pyste. The Python
View is a standard plug-in for IGUANA Studio. It pops
up a window in the environment which allows the user to
type and execute their scripts. This console has standard
features (like history) but it also features word completion
based on the Python dictionary.

CONCLUSION

IGUANA is a generic software currently available for
Linux, Mac OS X platforms. Windows versions have been
produced for prior versions. There has been significant ef-
fort put into improving the rendering performance, in some
cases by re-writing the basic shapes, in others by optimiza-
tion of the scene graphs.

In this year and a half IGUANA architecture has begun
to be exploited in order to finally provide a fully integrated
physicists environment. Much still has to be done, but huge
steps forward have been made in the direction of providing
a framework for the physicist’s desktop.

We have found that the modular design of IGUANA has
proven to be a very effective way to develop applications
step by step, introducing new features without requiring
major rewrites of the old, stable, components.

ACKNOWLEDGEMENTS

This work is supported by the NSF.

REFERENCES

[1] S. Ashby, I.Osborne, J.P. Wellisch, C. Williams, “Code Or-
ganization and Configuration Management”, Proceedings of
CHEP 2001, Beijing, China, September, 2001.

[2] V. Innocente, G. Eulisse, S. Muzaffar, I. Osborne, L. Taylor,
L.A. Tuura, “Composite Framework for CMS Applications”,
CHEP’04, Interlaken, Switzerland, September 2004.

[3] G. Alverson, G. Eulisse, S. Muzaffar, I. Osborne, L. Taylor,
L.A. Tuura, “IGUANA Architecture, Framework and Toolkit
for Interactive Graphics”, Proceedings of CHEP’03, La Jolla,
USA, March 2003.

[4] P. Mato, et al., “SEAL: Common core libraries and services
for LHC applications”, Proceedings of CHEP’03, La Jolla,
USA, March 2003.

[5] http://www.python.org/

[6] http://www.geuz.org/gl2ps/


