
OPTORSIM: A SIMULATION TOOL FOR SCHEDULING 
AND REPLICA OPTIMISATION IN DATA GRIDS

Caitriana Nicholson

University of Glasgow

c.nicholson@physics.gla.ac.uk

David Cameron

University of Glasgow

d.cameron@physics.gla.ac.uk

Ruben Carvajal-Schiaffino

ITC-irst

carvajal@itc.it

Paul Millar

University of Glasgow

p.millar@physics.gla.ac.uk

Kurt Stockinger

Berkeley Lab

Kstockinger@lbl.gov

Floriano Zini

ITC-irst

zini@itc.it

Introduction

Grid technology is emerging as the solution to the data handling and storage problems posed by the 
next generation of high energy physics experiments. It is important to make the best use of a grid’s 
resources, whether computational, storage or network, and it has been shown that data replication is an 
important mechanism for reducing data access times and hence improving overall resource usage. 
Simulation is a useful way of exploring possible replication algorithms and this has led to the 
development of the grid simulator OptorSim, originally as part of the European DataGrid (EDG) project.

Architecture

OptorSim’s architecture (left) is based on that of the EDG data management 
components. Computing and storage resources are represented by Computing Elements
(CEs) and Storage Elements (SEs) respectively, which are organised in Grid Sites. CEs
run jobs by processing data files, which are stored in the SEs. Users submit jobs to the 
grid according to the submission pattern chosen, then a Resource Broker (RB) 
schedules the jobs to Grid Sites. When a job is being processed at a CE, it will go 
through its list of files to process according to the chosen access pattern. If a file is 
required which is not present on the execution site, it must either be replicated or read 
remotely. Each site handles its file content with a Replica Manager (RM), within which a 
Replica Optimiser (RO) contains the replication algorithm which drives automatic 
creation and deletion of replicas. 

Optimisation Algorithms

There are two different types of optimisation which may be investigated using OptorSim: the scheduling 
algorithms used by the RB to allocate jobs, and the replication algorithms used by the RM at each site to 
decide when to replicate a file, which file to replicate and which to delete. The overall aim is to reduce the 
time it takes jobs to run, and also to make the best use of grid resources. In the short term, an individual 
user wants their job to finish as quickly as possible, but in the long term the goal is to have the data 
distributed in such a way as to improve job times for all users, thus giving the greatest throughput of jobs. 
Currently implemented are:

Scheduling

•Random - schedule to random site

•Access Cost - site where time to access 
all files required by job is shortest

•Queue Size - site where job queue is 
shortest

•Queue Access Cost - site where access 
cost for all jobs in queue is shortest.

Replication

•No replication

•Least Recently Used (LRU) - always replicate, delete 
least recently used file

•Least Frequently Used (LFU) - always replicate, delete 
least frequently used file

•Economic model (Binomial) - replicate if economically 
advantageous, using binomial prediction function for file 
values

•Economic model (Zipf) - replicate if economically 
advantageous, using Zipf-based prediction function.

OptorSim architecture

Inputs

Characterisation of aspects of real grid 
testbeds such as LCG has been used to get 
realistic input data, e.g. jobs and files based on 
the CMS 2004 data challenge (below).

File size distribution from CMS DC04 
analysis jobs

Jamie Ferguson

University of Glasgow

fergusjk@dcs.gla.ac.uk

Screenshots from 
OptorSim GUI

With OptorSim, it is possible to simulate any grid topology and 
list of jobs to process by means of a few configuration files. 
There are several job scheduling and file replication algorithms
implemented, and more can easily be added. 

OptorSim can be run from the command line or from a GUI 
(right). A number of statistics are output: 

• Total and individual job times 

• CE usage

• Number of replications, local and remote file accesses

• SE usage 

The appropriate statistics are output on the level of the grid, 
individual sites and site components. If the GUI is used, these 
can also be watched in real time.



Some Results

Simulations which have been performed include the EDG testbed, CMS data challenge testbeds and LCG 
testbed. With the CMS data challenge 2002 testbed (left), it is clear that Queue Access Cost is the best 
scheduler when job times and CE usage is taken into account (below left). The LFU replication algorithm is 
faster when only 1000 jobs are submitted, but the economic models perform better when there are more 
jobs (below, far right), especially with the Zipf-based prediction function.

Further Reading

• Analysis of Scheduling and Replica Optimisation Strategies for Data Grids Using OptorSim. D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, C. Nicholson, 
K. Stockinger and F. Zini. Journal of Grid Computing (to appear).

• Evaluation of an Economy-Based File Replication Strategy for a Data Grid. W. H. Bell, D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, K. Stockinger, and 
F. Zini. In International Workshop on Agent based Cluster and Grid Computing at CCGrid 2003, Tokyo, Japan, May 2003

Coming Soon - OptorSim 2.0!

http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim.html

Implementation

OptorSim is a time-based simulation package written in Java. Each 
CE is represented by a thread, with another thread acting as the
RB and, if the economic model is being used, more threads are 
used for the auctions and components of the RO which are 
responsible for them. There are two time models implemented. In 
SimpleGridTime, the simulation proceeds in real time. 
AdvancedGridTime is semi-event driven; when all the CE and RB 
threads are inactive, simulation time is advanced to the point when 
the next thread should be activated. The RB sends jobs to the CEs
according to the specified scheduling algorithm and the CEs
process the jobs by accessing the required files, running one job at 
a time until they have finished all their jobs. When a file is needed, 
the CE calls the getBestFile() method of the RO being used. 
The replication algorithm is then used to search for the ``best'' 
replica to use, and the file is either replicated to the local site or 
read remotely. Each scheduling and replication algorithm is 
implemented as a separate Resource Broker or Replica Optimiser 
class respectively and the appropriate class is instantiated at run-
time, making the code highly extensible. 

Sequence diagram of CE and RB threads Class diagram of implemented 
Optimisers

Preliminary results with the LCG 
testbed of August 2004 (left) show 
that the Access Cost and Queue 
Access Cost schedulers are the 
fastest (right). 

In this case, LFU is the fastest of the 
replication algorithms studied even 
for a large number of jobs, due to 
the large SE sizes in this 
configuration resulting in little 
replication taking place. Heavier 
loading of the resources is required 
to show the true performance of the 
replication algorithms.

CMS DC02 Testbed Topology

Results from CMS DC02 testbed: (L-R) Mean job time and CE usage for optimisation 
algorithms with different schedulers, 1000 jobs; mean job time for optimisation algorithms 
and Queue Access Cost scheduler, increasing number of jobs.

Mean job time for optimisation 
algorithms with different schedulers, 
1000 jobs, LCG testbed

LCG August 2004 Testbed Topology

Future Work

Further experimentation with the LCG testbed is ongoing, investigating 
different site policies, job types and job submission patterns. 

OptorSim 2.0 - with new time model, statistics, GUI and job submission 
options - will be released in the near future.


