OPTORSIM: A SSIMULATION TOOL FOR SCHEDULING AND REPLICA
OPTIMISATION IN DATA GRIDS
D. G. Cameron, A. P. Millar, C. Nicholson, University of Glasgow, Glasgow G12 8QQ, Scotland

R. Carvajal-Schiaffino, F. Zini, ITC-irst, Via Sommarive 18, 38050 Povo (Trento), Italy
K. Stockinger, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract

In large-scale grids, the replication of files to different
sites and the appropriate scheduling of jobs are both im-
portant mechanisms which can reduce access latencies and
give improved usage of resources such as network band-
width, storage and computing power. In the search for
an optimal scheduling and replication strategy, the grid
simulator OptorSim was developed as part of the Euro-
pean DataGrid project. Simulations of various high energy
physics (HEP) grid scenarios have been undertaken us-
ing different job scheduling and file replication algorithms,
with the emphasis being on physics analysis use-cases. An
economy-based strategy has been investigated as well as
more traditional methods, with the economic models show-
ing advantages for heavily loaded grids.

INTRODUCTION

The remit of the European DataGrid (EDG) [1] project
was to develop an infrastructure that could support the in-
tensive computational and data handling needs of widely
distributed scientific communities. In a grid with limited
resources, it is important to make the best use of these
resources, whether computational, storage or network. It
has been shown [3, 4] that data replication - the process of
placing copies of files at different sites - is an important
mechanism for reducing data access times, while good job
scheduling is crucial to ensure effective usage of resources.
A useful way of exploring different possible optimisation
algorithms is by simulation, and as part of EDG, the grid
simulator OptorSim was developed and used to simulate
several grid scenarios such as the CMS Data Challenge
2002 testbed [2]. Although the EDG project has now fin-
ished, the work on OptorSim has continued, with emphasis
on particle physics data grids such as the LHC Comput-
ing Grid (LCG). In this paper, an overview of OptorSim’s
design and implementation is presented, showing its use-
fulness as a grid simulator both in its current features and
in the ease of extensibility to new scheduling and replica-
tion algorithms. This is followed by a description of some
recent experiments and results.

SIMULATION DESIGN

There are a number of elements which should be in-
cluded in a grid simulation to achieve a realistic environ-
ment. These include: computing resources to which jobs
can be sent; storage resources where data can be kept; a

scheduler to decide where jobs should be sent; and the net-
work which connects the sites. For a grid with automated
file replication, there must also be a component to perform
the replica management. It should be easy to investigate
different algorithms for both scheduling and replication and
to input different topologies and workloads.

Architecture

OptorSim is designed to fulfil the above requirements,
with an architecture (Figure 1) based on that of the EDG
data management components. In this model, comput-

Users

Grid
Resource Broker
Grid Site i Grid Site
Replica Manager Replica Manager
Optimiser Optimiser
| —
Storage Storage
Element Element

Figure 1: OptorSim Architecture.

ing and storage resources are represented by Computing
Elements (CEs) and Storage Elements (SEs) respectively,
which are organised in Grid Stes. CEs run jobs by pro-
cessing data files, which are stored in the SEs. A Resource
Broker (RB) controls the scheduling of jobs to Grid Sites.
Each site handles its file content with a Replica Manager
(RM), within which a Replica Optimiser (RO) contains the
replication algorithm which drives automatic creation and
deletion of replicas.

Input Parameters

A simulation is set up by means of configuration files:
one which defines the grid topology and resources, one the
jobs and their associated files, and one the parameters and

algorithms to use. The most important parameters include:
the access pattern with which the jobs access files; the sub-
mission pattern with which the users send jobs to the RB;
the level and variability of non-grid traffic present; and the
optimisation algorithms to use. A full description of each
is in the OptorSim User Guide [5].

Optimisation Algorithms

There are two types of optimisation which may be inves-
tigated with OptorSim: the scheduling algorithms used by
the RB to allocate jobs, and the replication algorithms used
by the RM at each site to decide when and how to replicate.

Scheduling Algorithms. The job scheduling algorithms
are based on reducing the “cost” needed to run a job. Those
currently implemented are: Random (a site is chosen at ran-
dom); Access Cost (cost is the time needed to access all the
files needed for the job); Queue Size (cost is the number of
jobs in the queue at that site); and Queue Access Cost (the
combined access cost for every job in the queue, plus the
current job). Apart from with the Random scheduler, the
site with the lowest cost is chosen. It should be noted that
this “cost” is unrelated to the price of files in the economic
model for replication, described below.

Replication Algorithms. There are three broad options for
replication strategies in OptorSim. Firstly, one can choose
to perform no replication. Secondly, one can use a “tra-
ditional” algorithm which, when presented with a file re-
quest, always tries to replicate and, if necessary, deletes
existing files to do so. Algorithms in this category are
the LRU (Least Recently Used), which deletes those files
which have been used least recently, and the LFU (Least
Frequently Used), which deletes those which have been
used least frequently in the recent past. Thirdly, one can
use an economic model in which sites “buy” and “sell” files
using an auction mechanism, and will only delete files if
they are less valuable than the new file. Details of the auc-
tion mechanism and file value prediction algorithms can
be found in [6]. There are currently two versions of the
economic model: the binomial economic model, where file
values are predicted by ranking the files in a binomial dis-
tribution according to their popularity in the recent past,
and the Zipf economic model, where a Zipf-like distribu-
tion is used instead.

Implementation

In OptorSim, which is written in Java™, each CE is rep-
resented by a thread, with another thread acting as the RB.
The RB sends jobs to the CEs according to the specified
scheduling algorithm and the CEs process the jobs by ac-
cessing the required files, running one job at a time. In the
current implementation, the number of worker nodes for
each CE simply reduces the time a file takes for process-
ing, rather than allowing jobs to run simultaneously. When
a file is needed, the CE calls the getBestFile () method

of the RO being used. The replication algorithm is then
used to search for the “best” replica to use. Each schedul-
ing and replication algorithm is implemented as a separate
Resource Broker or Replica Optimiser class respectively
and the appropriate class is instantiated at run-time, mak-
ing the code easily extensible.

There are two time models implemented, one time-based
and one event-driven, and OptorSim can be run in either
mode with the same end results. In the time-based model,
the simulation proceeds in real time. In the event-driven
model, whenever all the CE and RB threads are inactive,
the simulation time is advanced to the point when the next
thread should be activated. The use of the event-driven
model speeds up the running of the simulation consider-
ably, whereas the time-based model may be desirable for
demonstration or other purposes.

OptorSim can be run from the command-line or using
a graphical user interface (GUI). A number of statistics are
gathered as the simulation runs, including total and individ-
ual job times, number of replications, local and remote file
accesses, volume of storage filled and percentage of time
that CEs are active. If using the command-line, these are
output at the end of the simulation in a hierarchical way for
the whole grid, individual sites and site components. If the
GUI is used, these can also be monitored in real time.

EXPERIMENTAL SETUP

Two grid configurations which have been simulated re-
cently are the CMS? Data Challenge 2002 testbed (Fig-
ure 2) and the LCG August 2004 testbed (Figure 3).

Figure 2: CMS Data Challenge 2002 grid topology.

For the CMS testbed, CERN and FNAL were given SEs
of 100 GB capacity and no CEs. All master files were
stored at one of these sites. Every other site was given 50
GB of storage and a CE with one worker node. For the
LCG testbed, resources were based on those published by
the LCG Grid Deployment Board for Quarter 4 of 2004 [7],
but with SE capacities reduced by a factor of 100 and num-
ber of worker nodes per CE halved, to achieve useful results

1Compact Muon Solenoid, one of the experiments for the Large
Hadron Collider (LHC) at CERN.

\ep @ @ ITEP

NORTHGRID | sine
| S L
RU

ALBERTA
TRIUMF B CARLETON
u

TORONTO
u

B PRAGUE
B CESNET

BELING

L]
AT BUDAPEST
a

UiBK

=
ICEPP B HELLASGRID

M RoMA
MiLanol B FRASCATI W AUTH
Neu B KIJW PAKISTAN INTA IFIC GR
TAwPEl B Asce

LEGNAROM M W NAPOLI
TORINO B WEIZMANN

10 Gbps
3Gbps
25 Gbps
1Gbps
—— 622Mbps
155 Mbps
33 Mbps

te
ite
te

ier—0 si
L ETELAVIV

er-1si

ier-2 si

EEEO
D4

outer

Figure 3: LCG August 2004 grid topology.

while keeping the running time of the simulation low. All
master files were placed at CERN. In both cases, a set of 6
job types were run, based on a CDF (Collider Detector at
Fermilab) use case [8], with a total dataset size of 97 GB.

| Testbed | No. of Sites | D/(SE) | (WN) | (C) (Mbit/s) |
CMS 20 1.764 1 507
LCG 65 0.238 108 463

Table 1: Comparison of Testbeds Used.

In order to compare results from these testbeds, it is nec-
essary to summarise their main characteristics. Useful met-
rics are: the ratio of the dataset size to the average SE size,
D/{SE); the average number of worker nodes per CE,
(WN); and the average connectivity of a site, (C'). The
values of these metrics for the two testbeds are shown in
Table 1. Some general statements can be made about these
characteristics:

e D/(SE). A low value of D/{SE) indicates that the
SEs have more space than is required by the files. Lit-
tle deletion will take place and one would expect the
different replication algorithms to have little effect.

e (IWN). A high value of (W N) will result in jobs be-
ing processed very quickly. If the job processing rate
is higher than the submission rate, there will then be
little queueing and the mean job time will be short. A
low number of worker nodes could lead to processing
rate being lower than the submission rate and thus to
escalating queues and job times.

e (C). A high (C) will result in fast file transfer times
and hence fast job times. This will have a similar ef-
fect on the ratio of job processing rate to submission
rate as described above for (W N).

Another important factor is the presence or absence of a CE
at the site(s) which initially hold(s) all the files. In Optor-
Sim, the intra-site bandwidth is assumed to be infinite, so

if a file is local there are no transfer costs involved. For
scheduling algorithms which consider the transfer costs,
most of the jobs will therefore get sent to that site.

RESULTS

CMS Data Challenge 2002 testbed

With the CMS testbed, three of the replication al-
gorithms (LFU, binomial economic and Zipf-based eco-
nomic) were compared for the four scheduling algorithms,
with 1000 jobs submitted to the grid. The mean job times
are shown in Figure 4. This shows that schedulers which

30000 A EcoBin

e

Eco Zipt

® LFU

>

25000

20000

15000

Mean Job Time (s)
L 2

10000

5000

0 | | | |
Queue Length Access Cost Queue Access Cost
Scheduler

Random

Figure 4: Mean job time for scheduling and replication al-
gorithms in the CMS 2002 testbed.

consider the processing cost of jobs at a site possess a clear
advantage, as mean job time is reduced considerably for the
Access Cost and Queue Access Cost schedulers. It can also
be seen that the LFU replication algorithm is faster than the
economic models for this number of jobs. This may be due
to the low value of (W N); as the economic models have
an overhead due to the auctioning time, there will initially
be more queue build-up than with the LFU.

A study was also made of how the replication algorithms
reacted to increasing the total number of jobs (Figure 5).
As the number of jobs on the grid increases, the mean job
time also increases. One would expect that it should de-
crease if the replication algorithms are effective, but with
the low value of (W N) in this case, the job submission rate
is higher than the processing rate, leading to runaway job
times. However, the performance of the economic models
improves in comparison to the LFU and when 10000 jobs
are run, the Zipf economic model is faster. For long-term
optimisation, therefore, the economic models could be bet-
ter at placing replicas where they will be needed.

10°E A EcoBin
Eco Zipf

® LFU

Mean Job Time (s)

1 O R RS U R
0
1 10 102 103 10

Number of Jobs

Figure 5: Mean job time for increasing number of jobs in
CMS 2002 testbed. Points are displaced for clarity.

LCG August 2004 testbed

The pattern of results for the scheduling algorithms in
the LCG testbed (Figure 6) is similar to that for CMS. The
Access Cost and Queue Access Cost algorithms are in this
case indistinguishable, however, and the mean job time for
the LFU algorithm is negligibly small. This is due to the
fact that in this case, CERN (which contains all the mas-
ter files) has a CE. When a scheduler is considering access
costs, CERN will have the lowest cost and the job will be
sent there. This is also a grid where the storage resources

A EcoBin

-

6000 Eco Zipf

® LFU

5000

4000

3000

Mean Job Time (s)
L

2000

1000

° A A

0 | | | |
Random Queue Length Access Cost Queue Access Cost
Scheduler

Figure 6: Mean job time for scheduling and replication al-
gorithms in LCG August 2004 testbed.

are such that a file deletion algorithm is unnecessary and a
simple algorithm such as the LFU runs faster than the eco-
nomic models, which are slowed down by the auctioning
time. It would therefore be useful to repeat these experi-
ments with a heavier workload, such that D/(SE) is large

enough to reveal the true performance of the algorithms.

CONCLUSIONS

The investigation of possible replication and scheduling
algorithms is important for optimisation of resource usage
and job throughput in HEP data grids, and simulation is
a useful tool for this. The grid simulator OptorSim has
been developed and experiments performed with various
grid topologies. These show that schedulers which con-
sider the availability of data at a site give lower job times.
For heavily-loaded grids with limited resources, it has been
shown that the economic models which have been devel-
oped begin to out-perform more traditional algorithms such
as the LFU as the number of jobs increases, whereas for
grids with an abundance of resources and a lighter load, a
simpler algorithm like the LFU may be better.

OptorSim has given valuable results and is easily adapt-
able to new scenarios and new algorithms. Future work will
include continued experimentation with different site poli-
cies, job submission patterns and file sizes, in the context
of a complex grid such as LCG.

ACKNOWLEDGMENTS

This work was partially funded by the European Com-
mission program 1ST-2000-25182 through the EU Data-
GRID Project, the ScotGrid Project and PPARC. The au-
thors would also like to thank Jamie Ferguson for the de-
velopment of the OptorSim GUI.

REFERENCES

[1] The European DataGrid Project, http://www.edg.org

[2] D. Cameron, R. Carvajal-Schiaffi no, P. Millar, C. Nichol-
son, K. Stockinger and F. Zini, “ Evaluating Scheduling and
Replica Optimisation Strategies in OptorSim”, Journal of
Grid Computing (to appear)

[3] K.Ranganathan and I. Foster, “ Identifying Dynamic Repli-
cation Strategies for a High Performance Data Grid”, Proc.
of the Int. Grid Computing Workshop, Denver, Nov. 2001

[4] W. Béell, D. Cameron, L. Capozza, P. Millar, K. Stockinger
and F. Zini, “ OptorSim - A Grid Simulator for Studying
Dynamic Data Replication Strategies’, Int. J. of High Per-
formance Computing Applications 17 (2003) 4

[5] W. Béll, D. Cameron, R. Carvajal-Schiaffi no, P. Millar, C.
Nicholson, K. Stockinger and F. Zini, “ OptorSim v1.0 In-
stallation and User Guide’, February 2004

[6] W. Bell, D. Cameron, R. Carvaja-Schiaffi no, P. Millar, K.
Stockinger and F. Zini “ Evaluation of an Economy-Based
Replication Strategy for a Data Grid”, Int. Workshop on
Agent Based Cluster and Grid Computing, Tokyo, 2003

[7] GDB Resource Allocation and Planning, http:/lcg-
computing-fabric.web.cern.ch/L CG-Computing-
Fabric/GDB_reosurce_allocation_planning.htm

[8] B. T.Huffman, R. McNulty, T. Shears, R. St. Denisand D.

Waters “ The CDF/DO UK GridPP Project”, CDF Interna
Note 5858, 2002

