Experienceintegrating a General Information System APl in LCG Job
M anagement and M onitoring Services

A. Delgado Peris, P. Méndez Lorenzo, S. Campana, F. Donno, R. Santinelli, A. Sciaba
CERN, Geneva, Switzerland

Abstract

In a Grid environment, both middleware services and ap-
plications require information on system resources. Un-
fortunately, different implementations of Grid Information
Services use different data models, and define different ac-
cess protocols. We have detected the necessity of a high
level API that makes the applications independent of the
underlying technology of the service, and shields them
from possible changes in its interface.

In this article, we present the design of such an API,
which can interact with several existing implementations
of the Information Service. It is flexible enough to adapt to
future changes. We have also implemented a prototype of
the API, which can query the Globus MDS and R-GMA,
while presenting a single interface to the user.

INTRODUCTION

Access to information on Grid resources is a necessity
in order to perform common tasks such as matching job re-
quirements with available resources, accessing files or pre-
senting monitoring information. Both middleware services,
like workload and data management, and applications, like
monitoring tools, require therefore an interface to the Grid
Information Service (1S) which provides that data.

The Problem

Even though a unique schema for the published informa-
tion is defined, actual implementations use different data
models and define different access protocols. Applications
interacting with the IS must therefore deal with several
APIs, and be aware of the underlying technology in order
to use the appropriate syntax to query it or to publish new
information.

As an example, the current IS used in the LHC Comput-
ing Grid (LCG) [1] is the Globus Monitory and Discovery
Service (MDS) [2], which is based on LDAP (Lightweight
Directory Access Protocol) and on LDAP specific database
backend. MDS is essential for the Grid: the workload man-
agement service uses it to get information about available
resources that match job requirements. Also monitoring
applications, such as GridICE [3], depend on it to periodi-
cally retrieve data about the status of the GRID in order to
build reports and statistics.

However, for several reasons, a new IS, the Relational
Grid Monitoring Architecture (R-GMA) [4], which is
based on a relational database and uses the Standard Query
Language (SQL), is being deployed. Applications that

want to use this new service will have to use not only a
new interface but also a different query language. If in the
future a new IS, such as the new MDS3, based on the Ex-
tensible Markup Language (XML), will replace MDS and
R-GMA, every application using the old APIs will have to
adapt to the new technology.

Proposed Solution

In order to overcome the described problem, we have de-
signed a new high level C++ API to MDS and R-GMA,
which can be extended to future implementations of the
IS. A query language and a data model is defined for this
general interface. The queries are translated internally and
transparently so that they are understood by these Informa-
tion Services.

To demonstrate the validity of our solution, we have im-
plemented a prototype that can query the Globus MDS and
R-GMA, while presenting a single interface to the user.
Our proposed interface is flexible enough to be extended
in the future if needed.

As will be described later, the prototype has been tested
with some common queries used in LCG, for both MDS
and R-GMA.

RELATED WORK

There has been much research in data integration, data
schema mapping and query translation. Some examples
are [5], [7] and [6]; although there are many more efforts
in these and related fields, which are not mentioned here.

There is however very little data integration work applied
to Grid environments. The only similar effort we know
about is that carried out within the ECCE project ([8]),
which presents an architecture for Information Services in-
tegration. We have, though, gone further by implementing
a prototype that actually performs schema and query trans-
lation and that has been tested in a real production system
(LCG).

A GENERAL INFORMATION SYSTEM
API

Overview

The general information system API that we propose
should provide applications with query, insert and delete
capabilities together with the possibility of dynamically
publishing a new schema or modifying an existing one.
For the moment the proposed prototype only deals with

queries. Figure 1 shows a schema of the proposed solu-
tion including only the query feature. As explained before,
it presents a single interface to the applications, defining
a query language and a canonical view of the information
schema (i.e. of the data that can be queried).

As shown in Figure 1, SQL and the relational model have
been chosen for those tasks. The reasons for that is that
they are powerful and flexible (offering features, such as
the join operation, not found in the LDAP architecture) and
they are mature and well understood (in comparison, e.g.,
to XML query languages, such as XQuery [9]).

Application
SQL I(“anonical Schema

General Interface ‘

Canonical Schema I SQL

‘ SQL Semantic Translator ‘ ‘

SQL I(anonical Schema

SOQL Semantic Translator |

SQL Iimplrm. Schema

‘SOI. to LDAP Syntactic Translator ‘ [SQL to SQL Syntactic Translator]

SQL Ilmplﬂn. Schema

SQL interface |

SQL I!mplfm. Schema

RGMA info service

Implem, b‘cllemaI SOL

Implem, S('IlemaI LDAP

‘ LDAP interface ‘ ‘

Implem. Schema I[.I)A r
MDS info service

Figure 1: General schema of the high level Information
Service API.

Depending on the actual IS that has to be queried (tar-
get IS), the user queries are translated, and the appro-
priate module to interact with this service is dynamically
loaded. In order to query MDS, for example, the queries
are adapted to its data model and translated to LDAP, and
a module that can speak the LDAP protocol (LDAP inter-
face) is loaded to retrieve the information.

Query and Schema Trandation

The translation of queries is divided into two phases: se-
mantic and syntactic.

The semantic translation maps the attributes of the gen-
eral interface data model to those of the target IS (by us-
ing a mapping file). This mapping is possible because no
matter which IS is used, the data it publishes is the same
(in LCG, it is defined by the GLUE schema [10]). Only
a correct correspondence between tables (of the relational
model), entries (in the directory model) and objects (in the
XML model) is needed. After this step, a new query, still
expressed in the general interface query language but con-
forming to the target IS data model has been generated.

The syntactic translation completes the process by con-
verting the query to the target IS query language. This may
involve splitting the query in several subqueries (in the case
that the target language lacks the conciseness of the one
used in the general interface).

It is important to notice that, by the use of simple text
mapping files for the semantic translation configuration,
modifications on the information model in use imply only
the adjustment of such files. Moreover, new Information
Services can be easily plugged into the general informa-
tion API (provided that a syntactic translator for their query
language is provided, or exists already).

Interfaces to the Target Information Services

At the lowest level of the package there are those classes
implementing the specific access protocols. We have de-
fined LDAP and R-GMA interfaces. The system however
can support further protocols.

General requirements. By means of a configuration
file specified by the user application, it is possible to define
the service, the protocol to be used to query the system and
further information specific to the protocol in use. This
configuration file is of the form: key = value and it can be
parsed via the class ConfigBuffer included as well in the
package.

LDAP Interface: This interface performs a query to
a LDAP based database. This class establishes a connec-
tion with a server, performs the query on attributes speci-
fied by the application and closes the connection. For not
trivial queries the output returned by the server is further
processed to provide the correct result. In this case the con-
figuration file includes parameters such as the name of the
server to connect to, the access port, the connection time-
out, etc.

R-GMA Interface. Each site must have a Monitor
Box, a service which collects and stores in a database the
information relative of that site. Both together are a col-
lector of information and an information provider to a gen-
eral R-GMA catalog to which each site must be registered.
In our implementation the application performs the request
using the SQL query language, while specific configuration
parameters are taken from the standard R-GMA installa-
tion. For more details on R-GMA please refer to [4].

IMPLEMENTED PROTOTY PE

The main class is the Lcglnfolnterface class. Applica-
tions must first instantiate an object of this class and then
call the initialize method, which causes the API to read the
configuration information and register all the necessary dy-
namic libraries.

For the described setup, a configuration file is required.
The file contains information about the Grid Information
Services that can be queried, indicates where the libraries

for the IS interfaces are, and gives the location of the map-
ping files to be used in the translations. A default configura-
tion file could be present at Grid sites, or could be provided
by the application linking the package.

After the initialization, the connect method can be in-
voked for a particular interface (to the target IS), causing
the code for a Querier object for that interface to be loaded,
and a pointer to it to be returned to the caller. By using
the dynamic linking of libraries, only the code necessary to
query the relevant IS has to be loaded at a given time.

The Querier class is a pure virtual one, and defines the
methods to be implemented in extended classes. Exam-
ples of extending classes are SQLtoL DAPQuerier and SQL-
toSQLQuerier, which can be used to query respectivelly
LDAP and SQL interfaces (like MDS and R-GMA), using
SQL as the input language in both cases. New Queriers,
such as a SQLtoXMLQuerier, could be added, and even the
input query language could be changed, by implementing
a XMLtoLDAPQuerier class. Of course, this is all trans-
parent to the application because all the extending objects
implement the methods defined by Querier. The applica-
tion might even ignore which actual interface is being used:
All it knows about is a pointer to a Querier object.

The classes performing the translations of queries are or-
ganized in a similar way to the Queriers, in order to permit
the addition of new translations if required. Every one of
them extends the pure virtual QueryTranslator and imple-
ments a particular input and output query language.

Finally, the Querier objects use a particular interface to
the implemented IS.

LDAP Interface: The main LDAP interface is called
InfoFromLDAP and it includes a basic method, query,
which establishes a connection to an LDAP server, per-
forms the query, retrieves the information requested by the
application and finally closes the connection. Each oper-
ation is performed by specific classes used by InfoFromL-
DAP: a synchronous connection is established through the
ISSynchConnection. This class is inherited from a pure
virtual class called 1ISConnection. This class has been in-
cluded to allow for any type of connection. Once the
connection has been successfully established, the class IS-
Query queries the LDAP based database following the re-
quest defined by the user application. Other classes, such
as ISObject and ISForwardlterator, handle the attributes re-
quested by the application and iterate through the whole
buffer returned by the server.

R-GMA Interface: As in the LDAP case, the inter-
face we provide for the R-GMA protocol, called InfoFrom-
RGMA, includes a fundamental method called query which
is responsible for establishing the connection to a R-GMA
server, getting the requested information and providing it
to the application. Specific classes of the R-GMA package
have been used to implement this query. The class Con-
sumer executes a SQL query and returns the information to
the user. The class ResultSet returns the string value result

of the query performed by the user application.

EXPERIENCE

We have compared our system with the one used by the
LCG-2 Workload Management System (WMS) and veri-
fied the full compatibility with our interface: the integration
of the WMS software with our proposed prototype C++
APIs is quite “easy” and allows for migration to new IS
technologies without further changes in the WMS code.

As we have explained in the overview, the prototype that
we present only includes SQL queries to retrieve informa-
tion already stored in the IS. At this moment only SQL SE-
LECT queries are supported. In this sense, the prototype
has been successfully tested using typical WMS and moni-
toring packages queries as the following example shows:

SELECT SoftwareRunTimeEnvironment
UniqueID FROM Glue.ComputingElement
Glue.SubCluster Glue.SubCluster.\
ApplicationSoftware

WHERE

(Glue.ComputingElement.UniquelID=
’1xb0706.cern.ch:2119/jobmanager-pbs-long’
AND

Glue.SubCluster.ClusterUniquelD=
Glue.ComputingElement.ClusterUniquelD)
AND
Glue.SubCluster.ApplicationSoftware.\
SubClusterUniquelID =
Glue.SubCluster.UniquelD

V0-dteam-dteaml
1xb0706.cern.ch:2119/jobmanager-pbs-long

LCG-2
1xb0706.cern.ch:2119/jobmanager-pbs-long

The LCG-2 data management services and client tools
have been mainly written in java whereas our prototype
APIs are implemented in C++. One can interface the Java
code with our C++ APIs using JNI. Although such JNI
bridge establishes a certain performance penalty, the actual
integration is rather straight forward and well understood.

In addition to these tests, we have already deployed
in the LCG infrastructure a new tool called Icg-infosites
which uses successfully the prototype API proposed in this
article. This tool allows applications to query the status of
the computing and storage resources for each VO.

Some experiments such as Alice or Atlas have included
into their software production environment the lcg-infosites
tool. In the case of Alice, additional tools depending on
this API have been implemented in the official monitoring
system (MonALISA [11]) to provide information regard-
ing for instance resources consumption from the Alice VO.
Using our proposed API permits a transparent transition

to different information technologies, without disruption in
Atlas or Alice operations.

FUTURE WORK

The prototype will be extended to not only get informa-
tion from the Information Services, but also to add, modify
and delete data and change or publish a new schema. SQL
being the input query language of the API, the addition of
this functionality would require a careful mapping of the
attributes affected by the UPDATE and INSERT statements
to the target data model, as one single statement could af-
fect several tables (or entries, or objects).

Since long time, LCG experiments have asked to be able
to publish experiment specific information such as software
tags and service information following a schema that is
VO specific and can change overtime. In this sense, at the
end of 2003 the EIS group at CERN has developed a tool
called Icg-ManageVOTAG that allows experiment software
manager to publish tags relative to the version of the soft-
ware installed at each site. As of today, the tool is flexible
enough. However it operates in a fixed mode and with a
given static schema.

New middleware services are also continuously added.
Every time this happens, a new schema supporting the in-
troduced services needs to be deployed on the entire LCG
infrastructure. Clients such as the Gridlce monitoring sen-
sors need to go through major upgrades. Having a high
level interface capable of handling in a dynamic way such
changes can alleviate the problems.

In general terms, the SQL syntax understood by the pro-
totype could be extended to a larger subset than the one
currently supported. In addition, a way to bypass the query
translation in order to pose a query directly to the target
IS (using directly the low level interface) can be easily in-
cluded.

Furthermore, support for new target Information Ser-
vices (such as MDS3, or others) could be added, and even
different query languages (like XML) could be accepted as
input language for the API. As explained before, the archi-
tecture of the classes of the prototype already foresees this
possibility.

Finally, more in production testing and integration with
real tools should be performed, in order to test the possibil-
ities of our solution in a real Grid environment.

CONCLUSIONS

We have presented a high level API for Grid Informa-
tion Services. This interface can successfully interact with
several of such services, which may vary in access proto-
col, query language and data schema, and can be used by
Job Management middleware or monitoring applications,
among others.

The proposed solution is based on data model (semantic)
and query language (syntactic) translation, and in dynam-
ical loading of specific interfaces for the target Informa-

tion Services. The translations are driven by text mapping
files, which can be easily created and modified. This and
the pluggable nature makes the system highly flexible and
adaptable to information schema variations and new Infor-
mation Services implementations.

In order to demonstrate the possibilities of our design,
a prototype has been implemented. We successfully tested
queries to Globus MDS and R-GMA for job management
and monitoring purposes.

ACKNOWLEDGMENTS

This work received support from the Istituto Nazionale
di Fisica Nucleare, Roma in Italy and Ministerio de Edu-
cacion y Ciencia, Madrid in Spain.

REFERENCES

[1] LHC Computing Grid Project. http://lcg.web.cern.ch/LCG/
[2] MDS in the Globus Toolkit. http://www.globus.org/mds/

[3] The Gridlce Monitoring System. http://grid-
ice.esc.rl.ac.uk/gridice/site/site.php
[4] R-GMA: Relational Grid Monitoring Architecture.

http://www.r-gma.org/

[5] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan
Quass, Anand Rajaraman, Yehoshua Sagiv, Jeffrey D. UlI-
man, Vasilis Vassalos, and Jennifer Widom. The TSIMMIS
approach to mediation: Data models and languages. Journal
of Intelligent Information Systems, 8(2):117-132, 1997.

[6] The Fundamentals of Mapping Objects to Relational
Databases Mapping 101, by Scott W. Ambler, 2003.

[7] R. Krishnamurthy, R. Kaushik, and J. Naughton. XML-to-
SQL Query Translation Literature: The State of the Art and
Open Problems. In Proc. of the 1st Int’l XML Database Sym-
posium (XSym), pages 1-18, Berlin, Germany, September
2003.

[8] K. Schuchardt, B. Didier, G. Black: Ecce — A Problem Solv-
ing Environment’s Evolution Toward Grid services and a Web
Architecture. Concurrency and Computation: Practice and
Experience 14(13-15): 1221-1239 (2002)

[9] XQuery 1.0: An XML Query Language. W3C Working
Draft. 23 July 2004. http://www.w3.0rg/TR/xquery/

[10] The GLUE Schema. http://www.cnaf.infn.it/sergio/datatag/glue/

[11] The MonALISA Monitoring System. http://aliens3:8080

