
EXPERIMENT SOFTWARE INSTALLATION EXPERIENCE IN LGC-2

R. Santinelli, F. Donno, S. Campana, A. Delgado Peris, P. Méndez Lorenzo, A. Sciabà
CERN, Geneva, Switzerland

Abstract
The management of application and experiment software
represents a very common issue in emerging Grid-aware
computing infrastructures. The current solution adopted
by the LHC Computing Grid (LCG) infrastructure for
HEP experiments allows an Experiment Software
Manager (ESM) to install the software on a VO-specific
file system shared among all worker nodes (WN) of a
farm. With this work we present a more flexible service
based on P2P technology that has been designed to tackle
the limitation of the current system. Here we illustrate the
design, deployment and preliminary results obtained.

1. INTRODUCTION
In the LHC Computing Grid, while the middleware is

installed by system administrators at a site level via
customized tools [1,2] that serve also for the centralized
management of the entire computing facility, Gigabytes of
Virtual Organization (VO) specific software or frequently
changing user applications need to be pre-installed,
configured and validated before a user job is executed at a
site. Following the requirements imposed by the
experiments, in LCG Experiment Software Managers
(ESM) are designated people with privileges for
completely managing software for a specific VO on a per
site basis. An ESM can also publish univocally identified
software tags in the LCG Information System (IS) to
announce the availability of a specific software version.
Users of a VO can then select, via the published tag, sites
to run their jobs. The solution adopted by LCG has
mainly served its purpose but it has several drawbacks.

In this article we report on the work done to collect a
list of requirements for the realization of an effective
software installation service for Grid and propose the
Tank&Spark Grid service as a possible solution to the
problem.

In Section 2 we describe the problem of Grid
application and experiment software installation. In
Sections 3 and 4 we list the requirements from
experiments’ and site administrators’ points of views,
respectively. In Section 5 we describe the current solution
adopted by LCG and used mainly by ATLAS and CMS,
and report on the feedback received. In Section 6 we
illustrate our proposed solution currently under test and
give some implementation details. Preliminary results
using the new software installation service, a summary on
related work, future work, and the conclusions are
presented at the end of this article.

2. THE PROBLEM
The problem of application and experiment software

installation in LCG and more in general in Grid-aware
computing facilities is not trivial. From an end-user point
of view the main requirement is the following: it has to be
guaranteed that experiment specific software, needed for
running a job, is available and validated at any site the job
can run. To achieve this, the ESM requires adequate tools
that allow for triggering software installation on Grid,
managing VO disk space and software versions, planning
for software upgrade and removal, publishing site and
software status related information, etc. From a site
administrator’s point of view what described above
becomes a source of concerns in terms of site security,
local policies to be respected, maintenance scheduling
and related problems, etc.

Many issues need technical answers and solutions, such
as:
• Establishing a mechanism that allows for

scheduling a software installation process when
appropriate.

• Ensuring adequate disk and space management.
• Failures and conflicts resilience.
• Resolving software dependencies issues.
• Handling concurrent installations.
• Satisfying pre-requisites before the experiment

software installation is triggered.

The above is a non-exhaustive list of issues that has to

be addressed when designing an application software
manager service for Grid.

3. THE EXPERIMENT’S VIEW
 During the start-up of data challenges executed on the
LCG infrastructure we collected requirements in terms of
software installation from the four LHC experiments and
from the site administrators running the LCG facility.
Here, we list the main features that a software installation
service should provide, from a user perspective.

Table 1: Disk space needed per experiment

Experiment Disk Space

Alice 1-2 GB

ATLAS 6 GB

CMS 2 GB

LHCb 1-2 GB

 Each LHC experiment requires frequent update of its
software releases, about three times per month.
Software should be installed freely and whenever
necessary removing old unused versions if applicable.

 In Table 1 we report the space requested by each LHC
experiment in order to allow for 2 releases of the
software to coexist.

 All software for the experiment should be installed
relative to a path. The path is accessible through an
environmental variable.

 No root access should be required to install
experiment software and actually experiments
required this to be always the case.

 Only a subset of the experiment’s users can write into
the experiment area. This is achieved through the
ESM special accounts. An ESM should be able to
add/remove software at any time without
communication with the site managers.

 The software has to be accessible on the WN through
POSIX calls.

 The ESM should be able to install software on a per
site base as well as launching a request to the entire
Grid supporting the specific VO.

 The ESM should be able to verify the installation in
separate steps. Different kind of validation procedures
can be run by the ESM at different moments.

 The ESM must have the possibility to publish in the
Grid Information System for a site special software
Tags to advertise all installed and validated versions of
the software in order to direct jobs to that site.

 It is the responsibility of the ESM to prepare a given
software distribution for a given release and manage
dependencies.

 Experiment software can be packaged, as the
experiment requires: tarballs, RPMs, DAR files,
Pacman [3], etc. Installation and validation scripts
should be provided by the experiments. Therefore,
dependencies should be expressed in a way that those
scripts can process them.

 The user environment should be setup by a script
placed in a given location that the user job sources as
a very first step.

4. THE SITE ADMINISTRATOR’S VIEW

The main concerns from the site manager’s point of view
are summarized in the following list.

 For security and maintenance reasons, no daemons
running on WNs are allowed. Neither user
applications nor software installation Grid services
should have control over WNs.

 Every individual access to a site must be traceable.
For this reason, no shared accounts are allowed.

 The information published by a site must not be
corruptible.

 Service actions, such as restart, flushing, etc. must not
be triggerable externally unless policies can be
applied. In fact, this could lead to denial-of-service
(DoS) attacks when the service is continuously

restarted. Such a DoS attack not only affects the VO
with the compromised ESM account, but also will
bring down the entire site.

 Access to any tool/service must be strongly
authenticated, and the restrictions and policies should
be applied on the server-end and not on the client-end.

 Possibly inbound/outbound connectivity requirements
from WNs should be avoided.

 It should be possible to control and apply site policies
to the software installation mechanism.

 One should not assume a shared file systems among
WNs to serve experiment software. Such a
requirement in fact poses serious performance,
reliability and scalability problems for large
installations.

5. THE CURRENT SOLUTION
 The current solution [4] proposed by LCG relies on the
figure of the ESM. The X.509 certificate subject of such a
person is mapped locally on a Grid farm to a special Grid
account with special write privileges in certain
experiment areas. Each experiment selects one or more
ESMs. The ESM is the person in charge to update the
software of the experiment at each site.
 The experiment software is first packaged into a
software specific bundle and moved via the Grid Data
Management system to one of the Storage Elements (SE)
belonging to the site where the software will be installed.
In this way the software can be installed on that farm
using a local cache and without requiring
inbound/outbound connectivity from the WNs.
 Then the ESM directs an installation job to the site.
Depending on the value of the variable
VO_<EXP>_SW_DIR the job installs the software at the
indicated location. The content of this variable is essential
to follow the behaviour of the tool. If the value is a “.”,
the software is installed and validated in the job working
area and then removed when the job is finished. If the
validation step has passed with success, the ESM can
publish in the Information System attribute
GlueHostApplicationSoftwareRunTimeEnvironment a VO
software specific tag that certifies the site for that specific
version of the VO software. Subsequent jobs ending up on
the same WN for execution have to perform first the
software installation step in their working area and then
execute the real job.
 If the value of the VO_<EXP>_SW_DIR environmental
variable is not “.”, the software is installed in a permanent
area (this can be shared among the WNs or local to a
specific WN). The ESM job has to first check if the
version of the software to be installed is already present.
Only if that version is not there the job proceeds with the
installation since the ESM is guaranteed to have write
privileges in that area. In this case the ESM can run
validation scripts in a second step, and only if the
validation process is successful, the ESM can publish the
relative software tag in the Computing Element (CE) IS
using a tool provided by LCG.

 The solution adopted by LCG has mainly served its
purpose. In particular, it provides a framework within
which experiments are free to use their own proprietary
distribution tools (Pacman [3] for ATLAS, tarballs for
Alice, DAR for CMS, a CVS repository accessible via
http/wget for LHCb). However, the current solution has
several drawbacks, as reported by the LHC experiments
in [5]:
 The lack of “roles” severely constrains the abilities of

software managers. An ESM should be able to
dynamically switch his/her role and become a normal
user able to submit normal user requests to the Grid.

 Many jobs failures are often due to loss of visibility
of the NFS file system either during software
installation or during run. Avoiding the use of NFS
on large installation can cure this problem. However
with the current system it is impossible to trigger on
demand installation on a whole farm of WNs.

 The ESM job has to compete with normal user jobs
without any special priority.

 There is no automatic mechanism to trigger a
software installation on the whole Grid, i.e. on all
sites supporting a specific VO.

6. OUR SOLUTION: TANK&SPARK
With release 2_2_1 of LCG-2 we introduce a service

called Tank&Spark that satisfies the requirements
previously listed. The toolkit is fully integrated with the
current solution. However it can work as well in a LCG
unconstrained framework. The toolkit provides as well for
many other interesting features, and it is fully compliant
with the policies imposed by site administrators.

Triggering automatic distribution to the Grid can be
achieved via a Grid job or directly contacting the
installation service at a site from a User Interface (UI). In
this latter case the ESM will not compete with normal
user jobs but it can immediately schedule a software
installation request.

The architecture of such a service foresees a multi-
threaded server (Tank) running on a dedicated machine (a
Computing Element for instance), a client application
(Spark) running on each WN of a farm and a r-sync
server running on a disk-server (a Storage Element)
acting as central repository of the experiment software.
Tank is a daemon listening on a dedicated port for
incoming connections. It can currently accept GSI-
authenticated and insecure connections but other security
protocols can be easily integrated. The service can
therefore be interfaced to VOMS and use the user
credentials interpreting user roles. Tank uses a MySQL
database to store internal status information.

The server component represents the central
intelligence of the system managing the various releases
of the experiment software that need to be
installed/removed.

The server obeys to the local policies set by the site
administrator on whether the installation/removal process
can take place or not. On a WN (or UI) when Spark is

invoked (via an ESM job), it installs the software locally
and then it contacts Tank. After authentication Spark
registers the new software tag in Tank’s DB.

On the other WNs, the client program is called by a
cron job running every 5 minutes. It retrieves the list of
tags relative to software releases installed since the last
update on that machine. In case of new updates, the client
synchronizes the local software area with the central
repository.

Such a schema allows for the management of
concurrent installations for the same VO. If an installation
or upgrade process is going on, the systems stops another
installation process from the same VO because of a
temporary lock imposed on that VO that lasts until the
process ends. Tank also controls the installation/removal
process for a specific WN by setting appropriates field on
the DB. In this way the installation on WNs sharing a file
system takes place only once allowing for the
management of farms with or without a shared file system
or in a mixed configuration.

7. THE IMPLEMENTATION
Tank&Spark has been entirely written in C++. The

server exposes its methods through the SOAP protocol
using gSOAP v2.3.

The Tank server uses the CERN implementation of the
GSI plug-ins for gSOAP. Via a local grid-mapfile or other
mechanisms, such as the EDG LCAS server, only
authorized users (or with the right role) are allowed to
perform installation tasks.

However, a module to interface to the generic high-
level security interface presented in this CHEP conference
is already foreseen. In this way the server can
dynamically support multiple authentication mechanisms.

The MySQL database on the server side keeps track of
information regarding the status of the nodes under the
control of the local Tank server, the last update time, the
type of the installation on that node (shared or local), etc.
Together with this information, a table storing the tags
relative to the software to be installed and their status is
kept. The “Monitor” table is used to keep control over
users performing installation on a given machine. The
same table is also used to enforce local policies.

The MySQL back-end database can be easily replaced
with other more reliable and robust databases such as
Oracle.

The service uses rsync to synchronize software
directories. The rsync mechanism is a plug-in and can be
replaced with other tools.

The toolkit is maintained using the GNU Autotools and
distributed via RPMs.

Installation, configuration and maintenance are quite
easy tasks. A Tank server can serve multiple VOs, while
at the moment, on each WN a crontab entry is needed per
VO supported running under one of the ESM local
accounts.

Both server and client are resilient to failures. If the
server goes down while an installation request is on

going, the user is notified and the installation can be
triggered later on. For this the retry mechanism of the job
submission on the LCG-2 infrastructure can be used.

Nodes contacting the server will just retry at a later
time.

If a WN goes down and looses the software disk, the
server will take care of triggering the installation of all
missing VO specific software versions.

8. EXPERIMENTAL RESULTS
We performed some preliminary functionality and

performances tests using the LCG Grid farm in Pisa. The
configuration of the farm is Pisa is reported in Table 2.

Table 2: Pisa farm configuration

Node Role Configuration

CE PIII 1GHz, 512MB

SE PIV 1.5GHz, 256MB

9 WN Dual PIII 1GHz, 512MB/
Dual AMD 1.6GHz, 1GB/
Dual Xeon 2.4GHz, 512MB

We installed Tank on the CE and used as rsync server

the one available on the SE.
On each WN a cron job, running every 5 minutes under

an ESM local account, serves two VOs. We simulated a
mixed configured farm with some WNs sharing a file
system for experiment software.

We simulated a true installation job, either by
submitting it through a Grid job or by running the tool as
a standalone application from a WN. The job installs the
software tagged as CMSIM-145.1.2-0. In Figure 1 we
show a few screen shots of the process.

Figure 1: The Tank DB tables

We monitored the memory usage (about 3 MB) and the
CPU load of the server program lcg-utank receiving
requests for each VO every 5 minutes. In our setup (2 VO
and 9 WNs) the server receives 18 connections and the
CPU load is negligible (0.1%).

9. RELATED WORK
 The Pacman software [3] has been developed by the
ATLAS collaboration for software distribution,
installation and configuration. Even though the package is
very effective and allows for dependencies management,
it cannot be considered an alternative to Tank&Spark. In
fact it cannot trigger installation on a set of WNs.
However Pacman could complement our solution
replacing for instance the rsync server.
 A very recent work on application software installation
is the one being developed in EGEE: the gLite PackMan
[6]. As presented this tool can be an alternative to
Tank&Spark. However PackMan does not just offer a
framework for ESMs since it forces the packager to give a
very detailed description of the software via specific
metadata files. In addition, PackMan does not tackle the
problem of automatic installation on a farm of WNs.

10. CONCLUSIONS
In this work we have presented our experience with
application and experiment software installation tools, the
list of requirements for an adequate tool, and our
proposed solution Tank&Spark. Preliminary results show
that the service proposed seems to be quite stable and
highly performing. Further enhancements include a more
reliable way to notify ESMs of the status of the
installation process, full support for pool ESM accounts, a
more efficient way to handle requests coming from a UI,
etc.

ACKNOWLEDGEMENTS
This work has been funded by Istituto Nazionale di Fisica
Nucleare, Rome - Italy and Ministerio de Educación y
Ciencia, Madrid - Spain.

REFERENCES
[1] Quattor: http://cern.ch/quattor/
[2] LCFGng:
 http://datagrid.in2p3.fr/distribution/datagrid/wp4/
 edg-lcfg/documentation/
[3] Pacman:

http://physics.bu.edu/~youssef/pacman/index.html
[4] The LCG-2 Software Installation tool:
 https://edms.cern.ch/file/412781/SoftwareInstallation.ps
[5] Preliminary observations on LCG-2 based on the
2004 LHC data Challenges: LCG-GAG-DC04.
[6] gLite PackMan:
http://agenda.cern.ch/askArchive.php?base=agenda&cate
g=a043837&id=a043837s1t0/transparencies

	EXPERIMENT SOFTWARE INSTALLATION EXPERIENCE IN LGC-2
	1. INTRODUCTION
	2. THE PROBLEM
	3. THE EXPERIMENT’S VIEW
	5. THE CURRENT SOLUTION
	6. OUR SOLUTION: TANK&SPARK
	7. THE IMPLEMENTATION
	8. EXPERIMENTAL RESULTS
	9. RELATED WORK
	10. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

