
Persistence for AnAlysis objects
julius hrivnAc - lAl/orsAy

There are two kinds of AIDA objects with respect to persistence requirements:

➢Objects, which are read/written entirely in one step: IHistograms, IClouds, IProfiles, ... All
Persistence requirements for those objects can be implemented by standard persistence
techniques based on Transient-Persistent Separation (JDO, Serialization,...)

➢Objects, which are read/written only partially in one step and objects which are only interrogated:
ITuples. It is not feasible to completely separate Transient and Persistent form of those objects.
Their Persistence should be tightly interfaced with their transient form. One possibility (chosen
here for SQL-based persistence) is to implement an ITuple extension for each persistence
mechanism.

orthogonAl Persistence

FreeHEP AIDA can be persistified using Java Data Objects (JDO).

➢FreeHEP AIDA storage API (IStore) should be enhanced to
support real database (the current one supports only file-like API).

➢AIDA objects can be decoupled from ITree management.
➢More powerful query machinery can be introduced.

AIDA specifies Interfaces, but persistence should work on Data.
There are two ways to handle it:
➢Persistify current FreeHEP implementation of AIDA.
➢Easy to implement.
➢Faster.
➢Not portable (depends on actual FreeHEP implementation).

➢Create AIDA DataClasses (from AIDA XML Schema by XSLT
StyleSheets) and persistify them.
➢Transient-Persistent converters should be written to convert

between DataClasses and actual implementation of AIDA. Non-
intrusive Aspects can be used as converters.

➢Slower.
➢Portable (AIDA XML Schema is common to all AIDA

implementations).

Persistence Descriptor (XML) Transient (Data) Class

DB Schema

DBManager PersistenceCapable Interface

IStore

AidaJDOStore

JDO Runtime

JDO Enhancer

DB

Defining
DB Schema.

Adding persistence into
bytecode of

transient class.

Creating and managing DB.
The only

DB-specific operation.

Transparently managing
lifecycle of

PersistenceCapable
class.

➢JDO is currently the mainstream
persistence technology for
Objects.

➢JDO implementations (both free
and commercial) exist for
practically all existing Databases
(relational or not).

➢All JDO Enhancers are
compatible.

➢JDO provides all standard
database functionality (transaction,
caching,...).

/** Plot all 1-dim histograms from a database. */

// Start AIDA
IAnalysisFactory af = IAnalysisFactory.create();
IPlotter page = af.createPlotterFactory().create("Page");
page.show();

// Start JDO
PersistenceManager pm = Connection.getPM(databaseProperties);
Transaction tx = pm.currentTransaction();
tx.begin();

// Get Histograms
Query query = pm.newQuery(Histogram1D.class);
Collection result = (Collection)query.execute();
page.createRegions(result.size() / 2 + 1, 2);

// Use Histograms
Iterator it = result.iterator();
int i = 0;
while (it.hasNext()) {
 page.region(i++).plot((IHistogram1D)it.next());
 }

// Close JDO
tx.commit();
pm.close();

SQLTuple implements AIDA interface as an extension of the FreeHEP JAIDA
implementation. ColMan contains several extensions (Filter, Plotter, Merger,
EventSelector, Replicator) using AIDA to perform global operations on NTuples (not
only SQLTuples). All the functionality is available using standard AIDA interfaces,
WebService access and JACE-created C++ proxies.

SQLTuple implementation of AIDA interface (including its extensions) is in
hep.aida.ref.sql package. Higher level extensions are in
net.hep.atlas.Database.Collections.Management package.

AIDA NTuples can be stored using many different storage
technologies (Compressed XML files, Root files, HBook files,
several SQL databases).

Operations between technologies (filtering, merging,...) are
possible via standard AIDA channels. Within SQL technology,
native SQL channels are used to speed up operations.

SQLTuple extends FreeHEP implementation of ITuple AIDA interface
so that ITuples can be stored in an SQL database. It supports any
relational DB backed via JDBC interface (configuration is provided for
MySQL, PostgreSQL, McKoi and Oracle, basic tests have been
performed also for Cloudscape and Hypersonic). All AIDA operations
(projections, filters, evaluators,...) are supported in a standard way.
Some new functions have been included on top of standard AIDA
Interface.

The implementations is, in principle, ready to be used in any AIDA-
complaint tool.

SQLTuple can be used to access and manage LCG Pool Event
Metadata SQL storage.

Advantages over alternative Tools:
➢SQLTuple runs on any platform without recompilation and can be

compiled on any platform using any Java compiler version 1.5+.
Distribution compatible with Java 1.4 can be provided if needed.

➢All Relational Databases can be supported in local (embedded) or
remote (server) mode (as long as such modes are supported by the
database).

➢The performance of SQLTuple is in most cases higher than
performance of equivalent C++ implementation.

➢SQLTuple can be easily used from other languages, like Python,
Ruby, Groovy, PNuts or C++ or as a language-neutral Web-Service.

➢All SQL mapping (both types and commands) is customizable via
text files.

Direct Persistence

SQLTuple depends on SQL only via (textual) run-time
configuration files:
➢Implementation.properties describes generic properties

of SQL backends (protocol name, JDBC driver,
capabilities,...).

➢Type.properties specifies SQL-Java type mapping (for
all involved SQL backends).

➢StmtSrc.properties defines SQL commands to be used
to perform AIDA functions (like ITuple.project(...), etc.).

ColMan (Collection Management) provides higher-level
functionality for the management of Event-level metadata
(Collections).
It supports LCG Pool metadata (SQL fully, Root files in
read mode). Following functions are available:
➢Filtering – creation of subCollections based on

selection string (Query).
➢Merging – concatenation of several Collections into

one.
➢Replicating - copying Collections into different

technologies and/or sites.
➢Plotting - creation of AIDA Histograms and Clouds

from Collections.
➢Selecting - looping over Event entries selected by a

Query.
ColMan functionality is exported to other languages and
Frameworks via:
➢ColManC – C++ proxies to ColMan classes.
➢ColManWS – XML-RPC Web Service.

Added Values for LCG Pool:
➢Standard API, already used in many Applications Frameworks and

well know to Users.
➢Platform-independent, multi-language API.
➢Many AIDA tools ready to access/process metadata.
➢Support for wide range of RDBSs.
➢Global operations (chaining, merging, filtering,...) on NTuples.

Added Values for AIDA:
➢SQL databases to store NTuples.

SQLTuple c
an be used

 fro
m JAS3

http://home.cern.ch/hrivnac/Activities/packages/SQLTuple

