AlDA

There are two kinds of AIDA objects with respect to persistence requirements:

JAlDA

Histogram

» Objects, which are read/written entirely in one step: IHistograms, IClouds, IProfiles, ... All

Persistence requirements for those objects can be implemented by standard persistence
techniques based on Transient-Persistent Separation (JDO, Serialization,...)

» Objects, which are read/written only partially in one step and objects which are only interrogated:

Persistency SErvices, |\—\]

FersistentalDua

ITuples. It 1s not feasible to completely separate Transient and Persistent form of those objects.
Their Persistence should be tightly interfaced with their transient form. One possibility (chosen

Carrvertar

l mechanism.

PersistentTuple it [Store Fam. PersistentHistogram

1
- r i
Tuple h_as & ;i|rect run-tirme Histogram, etc. is conwerted
cccccc tioh with [Stare.

inffrom its persistent form. [j

here for SQL-based persistence) 1s to implement an ITuple extension for each persistence

i

ORTHOGONAL PERSISTENCE

Persistence Descriptor (XML) Transient (Data) Class

Defining

DB Schema. JDO Enhancer

bytecode of
transient class.

£
N

DB Schema

AV4

Adding persistence into

[Store

ZF

|
A1daJDOStore

persistence technology for
Objects.

and commercial) exist for

(relational or not).

» All JDO Enhancers are
compatible.

»JDO provides all standard

caching,...).

DBManager PersistenceCapable Interface

Creating and managing DB.
The only
DB-specific operation.

FreeHEP AIDA can be persistified using Java Data Objects (JDO).

»FreeHEP AIDA storage API (IStore) should be enhanced to
support real database (the current one supports only file-like API).

» AIDA objects can be decoupled from ITree management.

»More powerful query machinery can be introduced.

AIDA specifies Interfaces, but persistence should work on Data.
There are two ways to handle 1it:
» Persistify current FreeHEP implementation of AIDA.

»Easy to implement.

> Faster.

»Not portable (depends on actual FreeHEP implementation).

» Create AIDA DataClasses (from AIDA XML Schema by XSLT

StyleSheets) and persistify them.

» Transient-Persistent converters should be written to convert
between DataClasses and actual implementation of AIDA. Non-
intrusive Aspects can be used as converters.

»Slower.

»Portable (AIDA XML Schema is common to all AIDA
implementations).

JDO Runtime

Transparently managing

lifecycle of
PersistenceCapable
class.

/** Plot all 1-dim histograms from a database. */

// Start AIDA

IAnalysisFactory af = IAnalysisFactory.create();
IPlotter page = af.createPlotterFactory().create("Page");
page.show();

// Start JDO

PersistenceManager pm = Connection.getPM(databaseProperties);
Transaction tx = pm.currentTransaction();
tx.begin();

// Get Histograms

Query query = pm.newQuery(HistogramlD.class);
Collection result = (Collection)query.execute();
page.createRegions(result.size() /7 2 + 1, 2);

// Use Histograms

Iterator it = result.iterator();

int i = 0;

while (it.hasNext()) {
page.region(i++).plot((IHistogramlD)it.next());
}

// Close JDO

tx.commit() ;
pm.close();

»JDO is currently the mainstream

»JDO implementations (both free

practically all existing Databases

database functionality (transaction,

‘Web Service interface. 'l]

|(E\rent) Collection Managerent. B}

g ST

]
i XML-RPC [SOAP
\Vi

g Colants | JWSDP _Eg

CalManc ACE-]MI
E ol an i_“J_ N

Colan

Filter

Platter

Merger

Eventselectar

C++ interface. %

il

DIRECT PERSISTENCE

http://home.cern.ch/hrivnac/Activities/packages/SQLTuple

abstract, implemenation language -
independent way. Both Java and C++

AlDA interfaces are specified in a
abstract interfaces are then derived.

AlDA-C++

S0OLTuple

&

AlDA-extensions

5

i
A\

g ADA-SOL

FreeHEP

JAIDA :g AlD A= M

-7

to

1
SOLTuple extends AlDuA
implemenation of FreeHEP {JAIDA)
S0 it can use SCL database as
ITuple stare.

It also proposes seweral extensions

AlDA interface and provides

higher-level Callection functionality
on top of AlDA

AIDA NTuples can be stored using many different storage
technologies (Compressed XML files, Root files, HBook files,

several SQL databases).

Operations between technologies (filtering, merging,...) are
possible via standard AIDA channels. Within SQL technology,
native SQL channels are used to speed up operations.

implermentation of AlDA and its interface

FreeHEP contains complete Java
10 C++.

Advantages over alternative Tools:

»SQLTuple runs on any platform without recompilation and can be
compiled on any platform using any Java compiler version 1.5+.
Distribution compatible with Java 1.4 can be provided 1f needed.

» All Relational Databases can be supported in local (embedded) or
remote (server) mode (as long as such modes are supported by the

database).

»The performance of SQLTuple is in most cases higher than

performance of equivalent C++ implementation.

»SQLTuple can be easily used from other languages, like Python,
Ruby, Groovy, PNuts or C++ or as a language-neutral Web-Service.

SQLTuple implements AIDA interface as an extension of the FreeHEP JAIDA
implementation. ColMan contains several extensions (Filter, Plotter, Merger,
EventSelector, Replicator) using AIDA to perform global operations on NTuples (not
only SQLTuples). All the functionality is available using standard AIDA interfaces,
WebService access and JACE-created C++ proxies.

SQLTuple implementation of AIDA interface (including its extensions) 1s in
hep.aida.ref.sql package. Higher level extensions are in
net.hep.atlas.Database.Collections. Management package.

Wiriting of oot files currently
as a standalone application.

Managerment of SOL DBs currently
as a FreeHEP extension.

SaL F.ootFile I

Oracle l
Caonversion between SOL
databases happen
MyE0L i

within SOLTuple.
M Ko :l

—

i
Embedded. I

-

" |conversions inside saL
database happen within
this databiase.

i PostgresoL

Added Values for LCG Pool:

»Standard API, already used in many Applications Frameworks and
well know to Users.

» Platform-independent, multi-language API.

»Many AIDA tools ready to access/process metadata.

» Support for wide range of RDBSs.

» Global operations (chaining, merging, filtering,...) on NTuples.
Added Values for AIDA.:

»SQL databases to store NTuples.

» All SQL mapping (both types and commands) is customizable via

text files.

Interface.

complaint tool.

SQLTuple extends FreeHEP implementation of ITuple AIDA interface
so that ITuples can be stored in an SQL database. It supports any
relational DB backed via JDBC interface (configuration 1s provided for
MySQL, PostgreSQL, McKoi and Oracle, basic tests have been
performed also for Cloudscape and Hypersonic). All AIDA operations
(projections, filters, evaluators,...) are supported 1n a standard way.
Some new functions have been included on top of standard AIDA

The implementations 1s, in principle, ready to be used in any AIDA-

SQLTuple can be used to access and manage LCG Pool Event
Metadata SQL storage.

SQLTuple depends on SQL only via (textual) run-time
configuration files:

»Implementation.properties describes generic properties
of SQL backends (protocol name, JDBC driver,
capabilities,...).

> Type.properties specifies SQL-Java type mapping (for
all involved SQL backends).

»StmtSrc.properties defines SQL commands to be used
to perform AIDA functions (like ITuple.project(...), etc.).

(Collections).

one

Query.

Frameworks via:

ColMan (Collection Management) provides higher-level
functionality for the management of Event-level metadata

It supports LCG Pool metadata (SQL fully, Root files in
read mode). Following functions are available:
> Filtering — creation of subCollections based on
selection string (Query).
»Merging — concatenation of several Collections into

»Replicating - copying Collections into different
technologies and/or sites.
> Plotting - creation of AIDA Histograms and Clouds
from Collections.
»Selecting - looping over Event entries selected by a

ColMan functionality 1s exported to other languages and

» ColManC — C++ proxies to ColMan classes.
»ColManWS — XML-RPC Web Service.

HME

@ \xs File Edit Yiew Tuple Run Window Help
fat i))
O’X\/ & Frograms
|#] Tuple T q
Q/ (/ ;Iupleg [# Tuplejava o' K
o [TestCollection 1 impart hep.aida.™;
o [TestCollection_LinkT able q
o (] aaa 3 public class Tuple {
4 public static woid main{3tring[] argy) throws Exception {
S) T E) beepmark. 100000100 s String db = "jobomysgl://localhost Tuples';
? i:lal ection_aica_ & 5tring options = "hep.aida.ref.sgl.db=" + db + "}"
attboolean 7 + "hep. aida ref. sgl.user=test"
libl attite 7 + "hep.aida ref.sql. passwd =test’;
lllll attchar 8 lanalysisFactory af = LanalysisFactory created;
m artshort 10 [Tree tree = af createTreeFactory). create(db, "sgl', true, false, options);
— attint 11 }
]Em_ ﬁ libt artiang 12}
File Edit Yiew Tuple Run LCD LCIO Window Help hl;l attfloat e
21 | @ collection_aida_100 |+ || p I hmf‘;g?]“?:fmg
Prograrms |3 CollectionLoopjava | [ili floatdivdouble ¥y Page 2 o' 4
& Tuples T onrt oro (reeh al Forordidant o [collection_aida_100_cpp =
) import org.freehep.record. loop. event. Recordadapter; A
o [J TestCollection Zimpaort org. freehep.record. loop. event. RecordSuppliedEvent; -0 tallection_aida_100.cpp_marged Sthilatp it bibl 13 IR 3 (il
; ; R 4 P B S ! o= ﬂ collection_aida_100_from_rmysgl o
o [J TestCallection_LinkTable Fimpor hep.aida.ref.tuple. Tuple; e -mysd BLIEE (Lehbk
o [aaa 4 o [collection_aida_100_from_postgresc| attfloat v Mean : 044065
X . o v Rms o 0.30460
o [benchmark_1000000_100 5 public class CollectionLoop extends RecordAdapter { : 2 collection_aida_100_from_xm| = o = 8 ° o
o [J collection_aida_100 § public void recordsupplied(RecordSuppliedEvent event) { o collection_aida_100_merged 0.9 = = = =
o [collection_aida_100_cpp 7 Object record = event.getRecord(; -0 collection_aica_100a L © CI =)
o [collection_aida_100_cpp_merge || Tuple wple = null; ¢ [J collection_aida_100b 08| o o @
o g collection_aida_ 100 _frorm_rmysc 1; iftgslteord iﬁnatgggre;CfDTr;plej{ Lk mﬂ;un 074 a o
o= caollection_aida_100_from_postg = = 5 ’ =] o o
o [collection_aida_ 100_fram_xmi 1 ystem.out printinituple. getDoublee)); il Event 064 = o = 5 Lo
o [collection_aida_100_merged z 1 ik Event = o
¢ [collection_aida_100a jj EISSE t{em out.printin{"Record is not Tuple™); il wissingeT 05T= = - - = -
o [collection_aida_100k 7 e ihi electronPT = - -
o~ [twple } libt tink_table_id 041 o = = 5 o
ne o ikl object_id_2 ~ = = o
élgaizspéfs_unﬂable K o @ tuple_LinkTahle 031 2 g oo e =
F F hhl database_id = =] =]
B [collection_aida_100] g 024 = a =
- o
4]] [T It class_id Ak o - e
e [ili technology.id) = o o O .,
0.409787 = {1kt object_id_1 oy = , =) g o o i
4 9l051a liht tink_table_id 01 02 03 04 05 06 07 08 09
0.00552744 attdouble
0.527482
0.57TR3085
0.5206468
0.0150682 =
0.341296 [11:10:37 aM ----------- compile succeszful
0.218633 2
Compiler = | Record Loop *
[[rupte cottection_aida 100 : 10 cotumns 100 rows. | T mcmumn aufloat : type float, min 0.0012155199656262994, max 0.9970179796218872

