Persistence for Analysis Objects

J.Hfivnac*, LAL, Orsay, France

Abstract

There are two kinds of analysis objects with respect to
their persistence requirements:

e Objects, which need direct access to the per-
sistence service only for their 10 operations
(read/write/update/...): histograms, clouds, pro-
files, ... All Persistence requirements for those objects
can be implemented by standard Transient-Persistent
Separation techniques like JDO [1], Serialization, etc.

e Objects, which need direct access to the persistence
service for some of their standard operations: NTu-
ples, Tags,.... It is not feasible to completely sepa-
rate Transient and Persistent form of those objects.
Their Persistence should be tightly interfaced with
their transient form. One possibility is to directly
implement a persistent extension of those objects for
each persistence mechanism.

The SQLTuple! has been developed to deliver efficient
SQL persistence for AIDA [2] standard NTuple objects.
The implementation is based on FreeHEP [3] AIDA imple-
mentation and is completely inter-operable with other Free-
HEP components as well as with other AIDA implementa-
tions. SQLTuple dependency on SQL database implemen-
tation is handled at run-time by textual configuration. In
principle all mainstream SQL databases are supported. The
default mapping layer can be customized so that, for exam-
ple, LCG [4] Pool [5] Tag databases can be transparently
supported. This customization is used to implement higher
level management utilities for Pool Tag databases - pack-
age ColMan. ColMan? utilities are accessible also from the
C++ environment and via standard Web Service.

PERSISTENCE

Persistence Classification

There are two kinds of AIDA objects with respect to per-
sistence requirements (see Figure 1):

e Objects, which are read/written entirely in one step:
IHistograms, IClouds, IProfiles, ... All Persistence re-
quirements for those objects can be implemented by
standard persistence techniques based on Transient-
Persistent Separation (JDO, Serialization,...)

* Julius.Hrivnac@cern.ch
Lhttp://home.cern.ch/hrivnac/Activities/Packages/SQLTuple
2http://home.cern.ch/hrivnac/Activities/Packages/ColMan

[Abstract interfaces. Dy

ADA,

Tuple IHistogram

Concrete implementations. [y

JAIDA

Tuple Histagrarm

Persistency Serdces. Dy

PersistentADA

Convertor

Pecsistentiuples] ool ysre ke - | Persistenttiistogram
T T
! |
i
; T
! |
[Tuple has a direct run-time HiStonram, et 15 converted
EapNECHOn AL inffrom its persistent form

Figure 1: Two kinds of Analysis Objects.

e Objects, which are read/written only partially in one
step and objects which are only interrogated: ITuples.
It is not feasible to completely separate Transient and
Persistent form of those objects. Their Persistence
should be tightly interfaced with their transient form.
One possibility (chosen here for SQL-based persis-
tence) is to implement an ITuple extension for each
persistence mechanism.

ORTHOGONAL PERSISTENCE

Java Data Objects [1]

JDO (see Figure 2) is currently the mainstream per-
sistence technology for Objects. JDO implementations
(both free and commercial) exist for practically all exist-
ing Databases (relational or not).

All JDO Enhancers are compatible.

JDO provides all standard database functionality (trans-
action, caching,...).

JDO and AIDA [2]

FreeHEP AIDA can be persistified using Java Data Ob-
jects (JDO).

e FreeHEP AIDA storage API (IStore) should be en-
hanced to support real database (the current one sup-

Persistence Descriptor (XML) Transient (Data) Class IStore
|
| i
I |
, Adding persistence into L v
Dg ?Z;:”;i JDO Enhancer I bytecode of Aida]DOStore
e : transient class. :
s |
|
DB Schema |
|
|
|
N ¥
DBMana.ger ' PersistenceCapable Interface o JDO Runtime

Creating and managing DB.
The only
DE-specific operation.

Transparently managing
lifecyele of
PersistenceCapable
class.

Figure 2: Java Data Objects.

ports only file-like API).

e AIDA objects can be decoupled from ITree manage-
ment.

¢ More powerful query machinery can be introduced.

AIDA specifies Interfaces, but persistence should work
on Data. There are two ways to handle it;

e Persistify current FreeHEP implementation of AIDA.
This solution is
— easy to implement,
— faster,
— not portable (depends on actual FreeHEP imple-
mentation).

e Create AIDA DataClasses (from AIDA XML Schema
by XSLT StyleSheets) and persistify them.

— Transient-Persistent converters should be writ-
ten to convert between DataClasses and actual
implementation of AIDA. Non-intrusive Aspects
can be used as converters.

— Itis slower.
— It is portable (AIDA XML Schema is common
to all AIDA implementations).

Following is a simple example of AIDA code using JDO
persistence:

/** Plot all 1-dim histograms
* from a database. */

// Start AIDA
IAnalysisFactory af = IAnalysisFactory.create();
IPlotter page =

af.createPlotterFactory() .create("Page") ;
page.show();

// Start JDO

PersistenceManager pm =
Connection.getPM(databaseProperties);

Transaction tx = pm.currentTransaction();

tx.begin();

// Get Histograms

Query query = pm.newQuery(HistogramiD.class);
Collection result = (Collection)query.execute();
page.createRegions (result.size() / 2 + 1, 2);

// Use Histograms

Iterator it = result.iterator();

int i = 0;

while (it.hasNext()) {
page.region(i++) .plot ((IHistogramiD)it.next());
}

// Close JDO
tx.commit () ;
pm.close();

|(Event) Collection Managerment. %

T
Web Service interface, D !

Coltan

Filter

| XML-RPC/SOAP

% Calbanis __J"'}'S_D_P_ _%g

Plattar

Merger

Eventselector

ColManC JACE-]MI
% ------- >

C++ interface. % Vi

L

abstract, implemenation language -
independent way. Both Java and C++

AlDAinterfaces are specified in a
abstract interfaces are then derived

SOLTuple

AlDA-extensions

I
% AlDA-50L

i

=

FreeHEP

JAIDA

-]

m
N
5
‘\
g AID A= I

V
S0LTuple extends AIDA
implemenation of FreeHEP {JAIDA)
s0 it can use 501 database as
ITuple store.

It also proposes several extensions
10 AlDA interface and provides
higher-level Collection functionality
on top of AlDA

implementation of AIDA and its interface

FreeHER contains complete |ava
mC++.

Figure 3: Java Data Objects.

DIRECT PERSISTENCE

SQLTuple and ColMan Component Diagram is shown
on Figure 3.

SQLTuple

SQLTuple implements AIDA interface as an extension
of the FreeHEP JAIDA implementation. ColMan con-
tains several extensions (Filter, Plotter, Merger, EventS-
elector,...) using AIDA to perform global operations on
NTuples (not only SQLTuples). All the functionality is
available using standard AIDA interfaces, WebService ac-
cess and JACE [6]-created C++ proxies.

SQLTuple implementation of AIDA interface
(including extensions) is in hep.aida.ref.sgl
package. Higher level extensions are in
net.hep.atlas.Database.Collections.Management pack-
age.

its

NTuple Persistence

AIDA NTuples can be stored using many different stor-
age technologies (Compressed XML files, Root [7] files,
HBook files, several SQL databases).

Operations between technologies (filtering, merging,...)
are possible via standard AIDA channels. Within SQL
technology, native SQL channels are used to speed up op-
erations.

COMPARISONS

Advantages over alternative Tools

SQLTuple runs on any platform without recompilation
and can be compiled on any platform using any Java com-
piler version 1.5+. Distribution compatible with Java 1.4
can be provided if needed.

All Relational Databases can be supported in local (em-
bedded) or remote (server) mode (as long as such modes
are supported by the database).

The performance of SQLTuple is in most cases higher
than performance of equivalent C++ implementation.

SQLTuple can be easily used from other languages, like
Python [8], Ruby [9], Groovy [10], PNuts [11] or C++ [12]
or as a language-neutral Web-Service.

All SQL mapping (both types and commands) is cus-
tomizable via text files.

Added Values for LCG Pool

Standard API, already used in many Application Frame-
works and well know to Users.

Platform-independent, multi-language API.

Many AIDA tools ready to access/process metadata.

Support for wide range of RDBSs.

Global operations (chaining, merging, filtering,...) on
NTuples.

Added Values for AIDA
SQL databases to store NTuples.

COMPONENTS

SQLTuple [20]

SQLTuple extends FreeHEP implementation of ITu-
ple AIDA interface so that ITuples can be stored in an
SQL database. It supports any relational DB backed
via JDBC [13] interface (configuration is provided for
MySQL [14], PostgreSQL [15], McKoi [16] and Ora-
cle [17], basic tests have been performed also for Cloud-
scape [18] and Hypersonic [19]). All AIDA operations
(projections, filters, evaluators,...) are supported in a stan-
dard way. Some new functions have been included on top
of standard AIDA Interface.

The implementations is, in principle, ready to be used in
any AIDA-complaint tool.

SQLTuple can be used to access and manage LCG Pool
Event Metadata SQL storage.

SQLTuple depends on SQL only via (textual) run-time
configuration files:

e Implementation.properties describes generic prop-
erties of SQL backends (protocol name, JDBC driver,
capabilities,...).

e Type.properties specifies SQL-Java type mapping
(for all involved SQL backends).

e StmtSrc.properties defines SQL commands to
be used to perform AIDA functions (like ITu-
ple.project(...), etc.).

ColMan [21]

ColMan (Collection Management) provides higher-level
functionality for the management of Event-level metadata
(Collections).

It supports LCG Pool metadata (SQL fully, Root files in
read mode). Following functions are available:

e Filtering - creation of subCollections based on selec-
tion string (Query).

e Merging - concatenation of several Collections into
one.

e Replicating - copying Collections into different tech-
nologies and/or sites.

Plotting - creation of AIDA Histograms and Clouds
from Collections.

Selecting - looping over Event entries selected by a
Query.

ColMan functionality is exported to other languages and

Frameworks via:

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]
(19]
(16]
(17]
(18]

(19]
(20]

(21]

ColManC - C++ proxies to ColMan classes.

ColManWS - XML-RPC Web Service.

REFERENCES

JDO - Java Data Objects (http://accessl.sun.com/jdo,
http://www.jdocentral.com)

AIDA - Abstract Interfaces for Data Andyss
(http://aida.freehep.org)

FreeHEP - HEP Components and Tools for Java
(http://java.freehep.org)

LCG - LHC Computing Grid Project
(http://Icg.web.cern.ch/LCG)

Pool of Persistency Objects for LHC
(http://Icgapp.cern.ch/project/persist)

JACE - C++ Interface to Java

(http://sourceforge.net/projects/jace)

Root - Object Oriented data Analysis Framework
(http://root.cern.ch)

Python - Interpreted, interactive, object-oriented program-
ming language (http://www.python.org)

Ruby - Interpreted scripting language for quick and easy
object-oriented programming (http://www.ruby-lang.org)

Groovy - Agile dynamic language for the JVM
(http://groovy.codehaus.org)
Pnuts - Script language for Java environment

(https://pnuts.dev.java.net)

C++ - Low level compiled programing language with some
Object Oriented features (http://www.cplusplus.com)

JoBC - Java Database
(http://java.sun.com/products/jdbc)

MySQL - SQL Database (http://www.mysgl.com)
PostgreSQL - SQL Database (http://www.postgresql.org)
McKoi - SQL Database (http://mckoi.com/database)
Oracle - SQL Database (http://www.oracle.com)

Cloudscape - SQL Database
306.ibm.com/software/data/cl oudscape)

Hypersonic - SQL Database (http://hsgldb.sourceforge.net)

Connectivity

(http://www-

SQLTuple - AIDA ITuple with SQL Backend
(http://home.cern.ch/hrivnac/Activities/Packages/ SQLTuple)
ColMan - (Event) Collection
Management for AIDA I Tuples

(http://home.cern.ch/hrivnac/Activities/Packages/Col Man)

