
Persistence for Analysis Objects

J.Hřivnáč
�

, LAL, Orsay, France

Abstract

There are two kinds of analysis objects with respect to
their persistence requirements:

� Objects, which need direct access to the per-
sistence service only for their IO operations
(read/write/update/...): histograms, clouds, pro-
files, ... All Persistence requirements for those objects
can be implemented by standard Transient-Persistent
Separation techniques like JDO [1], Serialization, etc.

� Objects, which need direct access to the persistence
service for some of their standard operations: NTu-
ples, Tags,.... It is not feasible to completely sepa-
rate Transient and Persistent form of those objects.
Their Persistence should be tightly interfaced with
their transient form. One possibility is to directly
implement a persistent extension of those objects for
each persistence mechanism.

The SQLTuple1 has been developed to deliver efficient
SQL persistence for AIDA [2] standard NTuple objects.
The implementation is based on FreeHEP [3] AIDA imple-
mentation and is completely inter-operable with other Free-
HEP components as well as with other AIDA implementa-
tions. SQLTuple dependency on SQL database implemen-
tation is handled at run-time by textual configuration. In
principle all mainstream SQL databases are supported. The
default mapping layer can be customized so that, for exam-
ple, LCG [4] Pool [5] Tag databases can be transparently
supported. This customization is used to implement higher
level management utilities for Pool Tag databases - pack-
age ColMan. ColMan2 utilities are accessible also from the
C++ environment and via standard Web Service.

PERSISTENCE

Persistence Classification

There are two kinds of AIDA objects with respect to per-
sistence requirements (see Figure 1):

� Objects, which are read/written entirely in one step:
IHistograms, IClouds, IProfiles, ... All Persistence re-
quirements for those objects can be implemented by
standard persistence techniques based on Transient-
Persistent Separation (JDO, Serialization,...)

�

Julius.Hrivnac@cern.ch
1http://home.cern.ch/hrivnac/Activities/Packages/SQLTuple
2http://home.cern.ch/hrivnac/Activities/Packages/ColMan

Figure 1: Two kinds of Analysis Objects.

� Objects, which are read/written only partially in one
step and objects which are only interrogated: ITuples.
It is not feasible to completely separate Transient and
Persistent form of those objects. Their Persistence
should be tightly interfaced with their transient form.
One possibility (chosen here for SQL-based persis-
tence) is to implement an ITuple extension for each
persistence mechanism.

ORTHOGONAL PERSISTENCE

Java Data Objects [1]

JDO (see Figure 2) is currently the mainstream per-
sistence technology for Objects. JDO implementations
(both free and commercial) exist for practically all exist-
ing Databases (relational or not).

All JDO Enhancers are compatible.
JDO provides all standard database functionality (trans-

action, caching,...).

JDO and AIDA [2]

FreeHEP AIDA can be persistified using Java Data Ob-
jects (JDO).

� FreeHEP AIDA storage API (IStore) should be en-
hanced to support real database (the current one sup-

Figure 2: Java Data Objects.

ports only file-like API).

� AIDA objects can be decoupled from ITree manage-
ment.

� More powerful query machinery can be introduced.

AIDA specifies Interfaces, but persistence should work
on Data. There are two ways to handle it:

� Persistify current FreeHEP implementation of AIDA.
This solution is

– easy to implement,

– faster,

– not portable (depends on actual FreeHEP imple-
mentation).

� Create AIDA DataClasses (from AIDA XML Schema
by XSLT StyleSheets) and persistify them.

– Transient-Persistent converters should be writ-
ten to convert between DataClasses and actual
implementation of AIDA. Non-intrusive Aspects
can be used as converters.

– It is slower.

– It is portable (AIDA XML Schema is common
to all AIDA implementations).

Following is a simple example of AIDA code using JDO
persistence:

���������	�	
��
�������	������������
��	���������
�! ��
���"�#�
�$
��$%����'&)(*�	�

���,+	
��$��
,-�.�/�-
.�-	0��
�$1�������2���3�
��	��14�� #56.7-�0��
�$18�
����2���3�
��	��19(:3���&��	

&<;>=�?
.������	
�
�&$�!@��	��&A5
�� 9(B3��
&��	
�&	�����	
�
�&'��2��
3�

�	�	1C;D=�(B3���&��$
�&E;�F>���$�
&�F'=�?

@��$��&)(B�����$G);D=�?

���,+	
��$��
IH$/�J
��&$���
����

&$0�3$&	K
�$0��	��&'�L@'�"5
M �$0�0�&�3�
��'�$0N(O��&	
��	KC;:���	

�$%
���$&'���
�$@�&$��
8�'&��
=P?

Q �
�$0��$��3�
��'�$0�
�RI5A@$�S(:3�T
����&'0

 Q ���'0��$��37
����$0C;>=�?

�R9(U%�&	���D0);D=�?

���AV
&	
,W��	��
��	���
�����
X T�&	��1#Y	T�&	��1,5#@$�S(Z0�&$G X T�&	��1C;[W�����
��$�����D�\�>/N(:3$���
���
=P?
M ������&�3�
��'�$0A��&���T8�$
,5]; M �
����&�3�
����$0^=�Y	T�&	��1N(_&$R�&
3�T

&<;>=�?
@��$��&)(B3��
&��	
�&	`
&	���'�$08��;[��&��7T8��
N(B����a�&\;>=b�,c,de�^fgc8=�?

���4h^�$&!W��	��
��	���
�����
.�

&	���	
��$����
#5���&��7T8�$
N(��7
�&	���	

�	�i;D=P?
�70�
j�45Ik\?
G����$��&l;D��
N(Z������m�&$R�
C;D=�=bn
@��	��&)(U��&	���'�'0);D��d�d�=<(U@����$
C;	;D.�W8����
��$�����D�\�>/�=��7
N(o0�&	R�
i;>=�=�?
p

��� M �����$&#H$/�J

�R9(B3$��������
C;D=�?
@$�q(B3	�����'&\;D=�?

Figure 3: Java Data Objects.

DIRECT PERSISTENCE

SQLTuple and ColMan Component Diagram is shown
on Figure 3.

SQLTuple

SQLTuple implements AIDA interface as an extension
of the FreeHEP JAIDA implementation. ColMan con-
tains several extensions (Filter, Plotter, Merger, EventS-
elector,...) using AIDA to perform global operations on
NTuples (not only SQLTuples). All the functionality is
available using standard AIDA interfaces, WebService ac-
cess and JACE [6]-created C++ proxies.

SQLTuple implementation of AIDA interface
(including its extensions) is in hep.aida.ref.sql
package. Higher level extensions are in
net.hep.atlas.Database.Collections.Management pack-
age.

NTuple Persistence

AIDA NTuples can be stored using many different stor-
age technologies (Compressed XML files, Root [7] files,
HBook files, several SQL databases).

Operations between technologies (filtering, merging,...)
are possible via standard AIDA channels. Within SQL
technology, native SQL channels are used to speed up op-
erations.

COMPARISONS

Advantages over alternative Tools

SQLTuple runs on any platform without recompilation
and can be compiled on any platform using any Java com-
piler version 1.5+. Distribution compatible with Java 1.4
can be provided if needed.

All Relational Databases can be supported in local (em-
bedded) or remote (server) mode (as long as such modes
are supported by the database).

The performance of SQLTuple is in most cases higher
than performance of equivalent C++ implementation.

SQLTuple can be easily used from other languages, like
Python [8], Ruby [9], Groovy [10], PNuts [11] or C++ [12]
or as a language-neutral Web-Service.

All SQL mapping (both types and commands) is cus-
tomizable via text files.

Added Values for LCG Pool

Standard API, already used in many Application Frame-
works and well know to Users.

Platform-independent, multi-language API.
Many AIDA tools ready to access/process metadata.
Support for wide range of RDBSs.
Global operations (chaining, merging, filtering,...) on

NTuples.

Added Values for AIDA

SQL databases to store NTuples.

COMPONENTS

SQLTuple [20]

SQLTuple extends FreeHEP implementation of ITu-
ple AIDA interface so that ITuples can be stored in an
SQL database. It supports any relational DB backed
via JDBC [13] interface (configuration is provided for
MySQL [14], PostgreSQL [15], McKoi [16] and Ora-
cle [17], basic tests have been performed also for Cloud-
scape [18] and Hypersonic [19]). All AIDA operations
(projections, filters, evaluators,...) are supported in a stan-
dard way. Some new functions have been included on top
of standard AIDA Interface.

The implementations is, in principle, ready to be used in
any AIDA-complaint tool.

SQLTuple can be used to access and manage LCG Pool
Event Metadata SQL storage.

SQLTuple depends on SQL only via (textual) run-time
configuration files:

� Implementation.properties describes generic prop-
erties of SQL backends (protocol name, JDBC driver,
capabilities,...).

� Type.properties specifies SQL-Java type mapping
(for all involved SQL backends).

� StmtSrc.properties defines SQL commands to
be used to perform AIDA functions (like ITu-
ple.project(...), etc.).

ColMan [21]

ColMan (Collection Management) provides higher-level
functionality for the management of Event-level metadata
(Collections).

It supports LCG Pool metadata (SQL fully, Root files in
read mode). Following functions are available:

� Filtering - creation of subCollections based on selec-
tion string (Query).

� Merging - concatenation of several Collections into
one.

� Replicating - copying Collections into different tech-
nologies and/or sites.

� Plotting - creation of AIDA Histograms and Clouds
from Collections.

� Selecting - looping over Event entries selected by a
Query.

ColMan functionality is exported to other languages and
Frameworks via:

� ColManC - C++ proxies to ColMan classes.

� ColManWS - XML-RPC Web Service.

REFERENCES

[1] JDO - Java Data Objects (http://access1.sun.com/jdo,
http://www.jdocentral.com)

[2] AIDA - Abstract Interfaces for Data Analysis
(http://aida.freehep.org)

[3] FreeHEP - HEP Components and Tools for Java
(http://java.freehep.org)

[4] LCG - LHC Computing Grid Project
(http://lcg.web.cern.ch/LCG)

[5] Pool of Persistency Objects for LHC
(http://lcgapp.cern.ch/project/persist)

[6] JACE - C++ Interface to Java
(http://sourceforge.net/projects/jace)

[7] Root - Object Oriented data Analysis Framework
(http://root.cern.ch)

[8] Python - Interpreted, interactive, object-oriented program-
ming language (http://www.python.org)

[9] Ruby - Interpreted scripting language for quick and easy
object-oriented programming (http://www.ruby-lang.org)

[10] Groovy - Agile dynamic language for the JVM
(http://groovy.codehaus.org)

[11] Pnuts - Script language for Java environment
(https://pnuts.dev.java.net)

[12] C++ - Low level compiled programing language with some
Object Oriented features (http://www.cplusplus.com)

[13] JDBC - Java Database Connectivity
(http://java.sun.com/products/jdbc)

[14] MySQL - SQL Database (http://www.mysql.com)

[15] PostgreSQL - SQL Database (http://www.postgresql.org)

[16] McKoi - SQL Database (http://mckoi.com/database)

[17] Oracle - SQL Database (http://www.oracle.com)

[18] Cloudscape - SQL Database (http://www-
306.ibm.com/software/data/cloudscape)

[19] Hypersonic - SQL Database (http://hsqldb.sourceforge.net)

[20] SQLTuple - AIDA ITuple with SQL Backend
(http://home.cern.ch/hrivnac/Activities/Packages/SQLTuple)

[21] ColMan - (Event) Collection
Management for AIDA ITuples
(http://home.cern.ch/hrivnac/Activities/Packages/ColMan)

