
HEPBOOK - A PERSONAL COLLABORATIVE HEP NOTEBOOK

G. Roediger, Corporate Computer Services Inc., FNAL, Batavia, IL 60510, USA
P. Pomatto, Corporate Computer Services Inc., FNAL, Batavia, IL 60510, USA

Abstract

A High Energy Physics experiment has between 200
and 1000 collaborating physicists from nations spanning
the entire globe. Each collaborator brings a unique
combination of interests, and each has to search through
the same huge heap of messages, research results, and
other communication to find what is useful.

Too much scientific information is as useless as too

little. It is time consuming, tedious, and difficult to sift
and search for the pertinent bits. Often, the exact words to
search for are unknown, or the information is badly
organized, and the pertinent bits are not found. The search
is abandoned, the time is lost, and valuable information is
never communicated as it was intended.

Much of collaboration’s information is in the individual

physicist’s paper logbooks. The physicists record
important and pertinent information for their research.
They save the log books to refer to it later, copy pages,
and distribute them to their collaborators who share their
interest and research.

Electronic Logbooks are now used in the control room

of large detectors during the data acquisition phase. They
have proven useful for communicating the status of the
detector and to keep the history of lab sessions in a format
that can be queried and retrieved quickly. It has enabled
remote monitoring of the detector and remote emergency
help.

We have implemented an electronic Control Room

Logbook, called CRL. It is used in the D0 experiment's
detector control room for the Run II acquisition. As of
mid April 2004 there are over 305,000 entries in the D0
logbook, all viewable and able to be annotated from the
web. Other experiments such as CMS, MiniBoone, and
Minos have also adapted the CRL. These experiments all
have very different needs, so each group configured and
customized the CRL in many different ways.

 The HEPBook will move the logbook from the control

room to the personal and collaboratory HEP notebook. In
this paper we will review the HEPBook technology and
capabilities and discuss the new HEPBook architecture.
Among the topics discussed will be the use of Java
reflection to recursively produce an XML representation
of an entry, the ability to save personal entries as well as
share entries among a collaboration through multiple
repositories which incorporate software agent technology,
interface with the GRID, and implement multiple security

models. The HEPBook runs on all Java platforms
including Apple, Win32, and Linux.

KNOWLEDGEBOOK PROJECT
The project that created the HEPBook was funded by a

phase II SBIR from the Department of Energy. The goal
was to create a collaborative notebook useable in a
scientific and commercial setting. It was to allow
collaborators a means to store information and later share
and distribute that information in an organized manner.
The electronic notebook created is known as
KnowledgeBook and the HEPBook is a KnowledgeBook
configured with High Energy Physics customization. The
HEP features are a result of comments from the HEP
community that used the Control Room Logbook and
physicists that provided feedback from using beta copies
of the KnowledgeBook (KBook).

HEPBOOK FROM A USER VIEWPOINT
A collaborator can use the HEPBook as a private

personal notebook and as a shared notebook in a public
environment. The notes that are private are kept in a local
repository configured on a filesystem accessible from the
machine running the HEPBook. The remote repositories
are accessed via a network configuration. The shared use
of the notebook can be to one or more remote repositories
associated with a group of users. This group may be as
large as a collaboration or as small as 2 or 3 colleagues.

The client side software can be configured to run on

Win 32, Linux, or Mac environments. There are dual
boot users that share filesystems across multiple OS
platforms. Since the local repository is stored in an OS
neutral form, a dual boot user can view the entries from
either system. Another popular configuration is to install
all the files including the HEPBook in an AFS filesystem.
Users then do not have to install the HEPBook and can
reference their local repository from any machine with
AFS.

The GUI
A user will see four regions in the HEPBook GUI (see

Figure 1). The upper left region (#1), is a tree
representation of the repository(s) structure. The node for
the local repository appears just below the tree root,
KnowledgeBook. Any attached remote repositories will
appear at this same level. These available repositories can
be exploded and explored to leaf nodes called containers.
The user can create any structure and naming convention
under their repository area to organize their entries. The

entries are placed into the container nodes. Right clicking
a container node gives the option to explore the
container’s entries. Opening a container node brings up a
blank entry on the desktop region of the GUI (#3 of
Figure 1). Multiple containers can be opened at one time
and are stacked on the desktop. The navigator (#2 of
Figure 1), can be used to focus stacked containers and
bring them to the top of the desktop. The last region is an
expandable search form located at #4 above the desktop.

In Figure 1 the desktop region (#3) shows an entry

being created. There are numerous built in entry
components that can be added to an entry. These include
plain mono spaced text, styled text, output from programs
or text files, user defined XML forms, latex equations,
attached files, images, and links to other entries or URLs.
This list of components can be expanded as experiments
or users create new information needs. An example of a
new component would be recording sound bites and
inserting them into the entry. The styled text can be
formatted with color, font type, font size, bolding,
underlining, or italicising. Text manipulation has cut,
copy, paste, undo and redo.

The user defined forms are written in XML. They

allow for input of structured data through fields, tables,
radio buttons, checkboxes, scripts, lists, and pull down
lists. Forms can also contain embedded static and

dynamic forms to create more complex forms. Variables
can be associated with form fields which can later be
referenced in scripts. A script could be a shell script to
submit a job to the local operating system. Fields within
a form could be filled in and then the script with the
variable values substituted can be executed on the local
system. Because the fields within the form are part of the
entry, saving the entry saves your job parameters for later
access, sharing or editing.

Once an entry has been created it is named by the user

and saved in a container. If this is a previous entry that is
being edited, the user can decide to either overwrite the
original, version the entry, or save it under a new name.
Entries may be moved or copied between containers.

Remote Repository
Remote repositories are managed as a server with

accounts given to users for access. A user can connect to
the remote repository by providing the necessary security
credentials. Each remote repository can specify its own
security requirements. This means a user connecting to 2
or more remote systems may have multiple security
credentials. The security model is based around JAVA
JAAS.

The HEPBook uses different Java classloaders to

separate repositories. This allows two different

repositories to run different versions of the code or have
custom entry components available to entries for that
repository only.

A user can connect to any remote repository where they

have account authorization. A successful connection
includes the synchronization of all structure changes and
code updates that may have occurred while offline. All
communication to remote sites is via SSL (Secure Socket
Layer) channels.

Client Server Architecture
Figure 2 shows the client server architecture. The

server is implemented using JBOSS, an open-sourced
Java Enterprise Application Server (J2EE) container. The
repository server allows collaborators in a virtual
organization (VO) to share notes, files, code, data results,
or any other information placed in an entry. Since entries
can contain entry components that can be created as
information needs change, this architecture allows for
current as well as future information requirements. The
user owns their entries that are placed in the central VO
repository (VOR) and can place access restrictions on
other collaborators.

The VOR will store entries the same as a user stores his
personal local entries. Additionally the VOR will add
access control so these entries may be selectively shared
among the valid VOR collaborators. The VOR may be
configured to handle entries in “special” ways depending
on the data types or data values of entries’ components.
Both storage and retrieval of entries can involve custom
handling of the request. This handling is determined by
software agents programmed and administered by the
VOR. In Figure 2 these agents are depicted by the S1, S2,
or S3 agents connected to the Storage agent. The Storage
agent will perform the same storage functions as the local
repository but will also ask the specialized storage agents
if they want to store additional content or meta data. This
may involve the specialized agents contacting a 3rd party
system such as a document database already in existence,
or any other analysis database. The HEPBook provides a
consistent interface and front end for existing systems
while providing a clean mechanism for adding additional
interfaces in the future. Retrieval and notification have
similar agents and interfaces. Notification could involve
email, posting to web sites, paging, or web services for
example.

Figure 2 Architecture

A TYPICAL SENARIO
 The HEPBook has many capabilities and functions that
solve the everyday tracking of what was done and how it
can be recorded and shared. Following is a scenario based
on using built-in HEPBook functionality to solve a CMS
issue:

CMS has numerous run scripts that collaborators use to

submit jobs to the CMS User Analysis Farm (UAF) at
Fermilab. One such script is the CMKIN script that has
various settings internal to the script that can be modified
by the physicist running the job. This CMKIN script was
inserted into a HEPBook form entry component as a
XML form script. Additional fields, select boxes, and
lists were added to the form to allow physicists to select
values for various CMKIN parameters. These form
values were then related to the embedded CMKIN script
parameters through the XML. The user of the HEPBook
could now create an entry in his local or CMS shared
repository and add this CMKIN form as part of that entry.
After filling in the form fields representing CMKIN
parameters (zmass for example), the user could submit the
job from the HEPBook directly to the UAF for
processing. When the entry is saved in the HEPBook all
parameter values and custom modifications made to the
CMKIN script are also stored. At a later time the user
could retrieve or share this entry with all the settings for
the run. The entry could be modified with results from
the CMKIN run by adding more information to the
HEPBook entry. It would also be possible to change the
entry fields and resubmit the job. Now the entry could be
overwritten, versioned, or saved as an entirely new entry.

The CMS repository could be programmed with a

software storage and retrieval agent to handle entries
containing forms that contain CMKIN runs. The fields
within the form could be saved and later analysed by
specialized software storage, retrieval, and organizational
agents within the VOR. These specialized software
agents could also interface with custom CMS systems.

SUMMARY
The KnowledgeBook Project has succeeded in

producing an electronic notebook capable of meeting the
needs of many disciplines, specifically High Energy
Physics. Through the use of plug-in data types (entry
components) and specialized storage, retrieval, and
organizational agents the notebook can be customized to
meet the growing needs for storing and sharing
collaborative information. Information that is saved in
organized storage can be retrieved as knowledge.

ACKNOWLEDGEMENTS
The HEPBook was developed and funded through a

phase II SBIR from the Department of Energy. The
features and capabilities reflect the feedback and
suggestions from users of the Control Room Logbook in
various HEP experiments including D0, Minos,
MiniBoone, CMS, and BTeV. Specific HEPBook input
came from Thomas Phillips, Hans Wenzel, Shuichi
Kunori, Patty McBride and many members of the
Computing & Engineering for Physics Applications
(CEPA) organization in the Fermilab Computing
Division.

REFERENCES
[1] http://java.sun.com/
[2]

http://www.uscms.org/scpages/general/users/farm/C
MS_UAF.html

.

