
CONTROL IN THE ATLAS TDAQ SYSTEM
D. Liko, D. Burckhart-Chromek, J. Flammer, M. Dobson, R. Jones, L. Mapelli,

CERN, Geneva, Switzerland

I. Alexandrov, S. Korobov, V. Kotov, M. Mineev,
Joint Institute for Nuclear Research, Dubna, Russia

A. Amorim, N. Fiuza de Barros, D. Klose, L. Pedro,
Universidade de Lisboa, Faculdade de Ciencias (FCUL- CFNUL), Lisbon, Portugal

E. Badescu, M. Caprini,
National Institute for Nuclear Physics and Engineering, Bucharest, Romania

S. Kolos*,
University of California, Irvine, USA

A. Kazarov, Y. Ryabov, I. Soloviev,
Petersburg Nuclear Physics Institute (PNPI), Gatchina, St. Petersburg, Russia

* On leave from Petersburg Nuclear Physics Institute (PNPI), Gatchina, St. Petersburg, Russia

Abstract

The unprecedented size and complexity of the ATLAS
TDAQ system requires a comprehensive and flexible
control system. Its role ranges from the so-called run-
control, e.g. starting and stopping the data taking, to error
handling and fault tolerance. It also includes initialization
and verification of the overall system. Following the
traditional approach a hierarchical system of customizable
controllers has been proposed. For the final system all
functionality will be therefore available in a distributed
manner, with the possibility of local customization.

After a technology survey the open source expert
system CLIPS has been chosen as a basis for the
implementation of the supervision and the verification
system. The CLIPS interpreter has been extended to
provide a general control framework. Other ATLAS
Online software components have been integrated as
plug-ins and provide the mechanism for configuration and
communication.

Several components have been implemented sharing
this technology. The dynamic behavior of the individual
component is fully described by the rules, while the
framework is based on a common implementation.
During this year these components have been the subject
of scalability tests up to the full system size. Encouraging
results are presented and validate the technology choice.

INTRODUCTION
The ATLAS Online Software [1] encompasses the

software to configure, control, and monitor the TDAQ
system but excludes the management, processing, and
transportation of physics data. It is designed as an object-
oriented framework based on industrial standards

(CORBA, XML, etc.). It follows an iterative development
cycle: a first prototype system has been developed and
was validated in several test beams and scalability tests
[2]. In the context of the preparation of the ATLAS
TDAQ TDR [3] high level requirements and architectural
choices have been reexamined [4,5].

The Online Software architecture is based on a
component model and consists of three high level
packages, Control, Databases and Information Sharing.
The Control package contains in turn sub-packages for
the control of the TDAQ system and detectors. Control
sub-packages exist to support TDAQ system initialization
and shutdown, to provide control command distribution,
synchronization, error handling, and system verification.

To complement the high level design a TDAQ Wide
Run Control has been set up. This group investigated
practical aspects of the integration between the Online
Software and the relevant TDAQ systems: High Level
Trigger and Dataflow. The Controller is considered as the
fundamental building block of the system and its
envisaged functionality has been described in detail [6].

THE CONTROL SUBSYSTEM
The TDAQ system is a large and heterogeneous system

composed of a large number of items to be controlled.
Typically these items are clustered and range from
readout modules in VME crates to workstations within
HLT computer farms. Such clusters are the preferred
places to interface with the Online Software Control
system. The number of these clusters is estimated to be in
the range of 500–1000. To control these units the TDAQ
control system is built in a hierarchical and distributed
manner.

The Control package is divided into a number of sub-
packages as shown in Figure 1. Its functionality has been
distributed between several distinct sub-packages:
• The User Interface for interaction with the operator;
• The Supervision for the control of the data-taking

session including initialization and shutdown, and for
error handling;

• The Verification for analysis of the system status;
• The Process Management for the handling of

processes in the distributed computing environment;
• The Resource Management for coordination of the

access to shared resources;
• The Access Management for providing authentication

and authorization when necessary.
In the following the only the Supervision sub-package is
discussed.

Figure 1: The organization of the control package

Supervision
The Supervision sub-package realizes the essential

functionality of the Control package. A system will
generally contain a number of controllers organized in a
hierarchical tree, one controller being in control of a
number of others in the system while being controlled
itself from a higher level controller. One top level
controller, called the root controller, will take the function
of the overall control and coordination of the system. The
User Interface sub-package provides all TDAQ control
facilities to the Operator.

The Initialization and Shutdown is responsible for:
• initialization of TDAQ hardware and software

components, bringing the TDAQ partition to the state
in which it can accept Run commands;

• re-initialization of a part of the TDAQ partition;
• shutting the TDAQ partition down gracefully;
• TDAQ process supervision.

The Run Control is responsible for
• controlling the Run by accepting commands from the

user and sending commands to TDAQ sub-systems;
• analyzing the status of controlled sub-systems and

presenting the status to the Operator.
The Error Handling is concerned with

• analyzing run-time error messages coming from
TDAQ sub-systems;

• diagnosing problems, proposing recovery actions to
the operator, or performing automatic recovery if
requested.

TECHNOLOGY CHOICE
Prototype evaluations have been performed for a

number of technologies. The initial choice for our
prototype had been based on experience in previous
experiments. Products were chosen that fit well in the
proposed object-oriented software environment.
• The Run Control implementation was based on a

State Machine model and used the State Machine
compiler, CHSM [7], as underlying technology.

• A Supervisor is mainly concerned with process
management. It had been built using the Open Source
expert system CLIPS [8].

• A verification system (DVS) performs tests and
provides diagnosis. It was also based on CLIPS.

It has to be pointed out that verification of the prototype
in scalability tests demonstrated successfully that the
system was capable of controlling up to the expected
system size [2]. Nevertheless several shortcomings of the
current system were identified. An important one is the
lack of flexibility in the state machine implementation
CHSM.

Evaluations
 Due to our positive experience our evaluations

concentrated on the expert system CLIPS and related
products. The general purpose nature of this product gives
the possibility to use it for all control aspects. The
knowledge base provides the basis for a customizable
solution, which can be specialized for different parts of
the system. Another advantage is the extensibility of
CLIPS. It can be interfaced with other components of the
Online Software system in a straight forward way. There
are also alternative products that follow the CLIPS model
as Jess [9], an implementation written in Java and a
commercial alternative, Eclipse by Haley Inc. [10].

Further possibilities have been investigated: SMI++ is a
system that models the controlled domain as a system of
interacting state machines [11] and is in use at several
HEP experiments. The architectural approach of this
product does not fit well to our component model.
Another possibility would be the use of general-purpose
scripting languages, such as Python [12]. Its advanced
capabilities make such a choice tempting, but some
general expert system or event management capabilities
would have to be implemented. While each of these
approaches has its particular merits, our evaluation finally
favored a CLIPS-based solution.

In conclusion the original choice the expert system
CLIPS was confirmed. It was found to be an advantage to
base the whole Control package on this technology.

DESIGN AND IMPLEMENTATION
In TDAQ Wide Run Control Working group a general

consensus was reached to design a flexible Controller
framework that unifies all control functionality in a
hierarchical system. User customization would provide
means to adapt the required functionality in accordance
with the TDAQ sub-system in question.

In the iterative development model such a design
should developed as an evolution of the prototype system.
The component model allows exchanging individual parts
without breaking the overall system. It was decided to
implement a common framework based on CLIPS. In a
first iteration the Run Control and the Supervision
component would be implemented on top of this
framework†.

Framework
The CLIPS interpreter has been extended to provide a

general control framework. It has been embedded in a
common CORBA server. A thread-safe mechanism for
the periodic evaluations of the knowledge base has been
put in place. Other ATLAS Online software components
have been integrated as plug-ins and provide the
mechanism for configuration and communication.

The complex interfaces between CLIPS and C++ is
confined to the plug-ins. All Online Software
functionality is available to the expert system by the
mechanism of associating function calls to external C++
functions. Also CORBA callbacks can be associated with
CLIPS user functions or CLIPS object message handlers.

In a typical implementation such CLIPS objects would
be used to implement proxies representing other elements
of the TDAQ system. The member attributes of these
objects are available to the knowledgebase as facts. As a
typical production system rules are then used to model the
interaction between these objects. These rules monitor the
status of the objects and provide the dynamic behavior of
a controller. The Rete algorithm [13], that is the basis of
CLIPS, ensures efficient evaluation,

Components
The run controller and the supervisor have been

implemented using the CLIPS scripting language‡. As
significant advantage to the previous implementation the
problem specific domain is fully implemented in the
knowledge base. This clear separation of CLIPS and C++
improves the maintainability of the components.

This approach can be compared with an
implementation of a control system following the state
machine model. The CLIPS solution profits from
powerful paradigm of an expert system and the versatility
of the CLIPS general purpose scripting language. On the
negative side one can identify the complexity of the
language bindings and the mechanism of object
orientation.

† It has to be pointed out that other Control components are based on
CLIPS technology. A smooth migration path can be envisaged in the
future.
‡ In addition Run Controllers have been extended by a common
multithreaded implementation that interacts with several controlled
items.

TESTS AND VERIFICATION

Scalability test
The aim of the tests [14] was to study the interaction

between the components, to identify critical areas and to
investigate the variation and optimization of online
system parameters. The timing values of the steps which
lead through the various data acquisition phases were
recorded and analyzed.

Up to 330 PCs of the CERN IT LXSHARE test bed
[15] were used. They were equipped with 600 to 800
MHz to 2.4 GHZ Dual Pentium III processors, 256 to 512
MB of memory running the Linux RedHat 7.3 operating
system with selected system parameters adjusted to the
needs of the tests. As there was no dedicated common file
system such as NFS available for the PC’s, the Software
was replicated on the local disk of each PC. The tests
were performed using several configurations:
• mon_standard: all the controller segments were

evenly distributed over all nodes,;
• mon_server: configuration a number of central

servers was run on dedicated 2.4 GHz PCs;
• mon_server_rdb: the configuration information was

accessed by a new implementation of a remote
database sever;

• mon_local the load of servers was decreased by
additional servers for the individual detector
partitions

Figure 2 shows a typical result of the measurements.
The boot transition shows the time necessary to start up
the system from the idle state to the active state. All
processes are started up and configured. For a
configuration close to the size of the expected system
(100 controllers) times between 40 to 100 seconds were
measured. As such an initialization is only performed at
the start of data taking periods, the result was considered
satisfactory.

Figure 2: Boot transition for the different partition sets

Figure 3 shows the time necessary to perform the so-

called lukewarm stop transition. This transition is typical
for the run control operation necessary to start and stop of
the data taking. The selected transition passes through 7
internal phases with synchronization of all controllers. In
the measurements only the communications overhead
introduces by the Online Software system has been
measured. In a real life system the actual operations in the

Dataflow and High Level trigger system are expected to
be an order of magnitude higher. Therefore the time
measured to stop the system, between 2.5 to 6 seconds
has also been considered satisfactory §.

Figure 3: Luke Warm stop transition

In summary the new implementation of the Run

Control and Supervision components based on a common
CLIPS framework has proven to be of satisfactory quality
and performance to control systems up to the size of the
expected ATLAS TDAQ system.

Test beam
Soon afterwards the new Supervision framework was

also used in this years combined test beam. For this test
beam a true slice of the final ATLAS TDAQ system has
been configured which includes all sub-systems. It has
been reported in more detail at this conference. Due to the
component nature of our software it was possible to
exchange the related software components in a
transparent way. The new components operated as
expected.

CONCLUSIONS
The control package is an essential part of the ATLAS

Online Software. Starting from the user requirements to
the overall architecture the system has been iterated
following the iterative software development cycle. The
technology choice of the CLIPS expert system has been
confirmed and its application extended to all aspects of
the Control package. A new implementation of Control
software components has been verified in a scalability
test. The increased flexibility introduced with the
implementation should provide an excellent basis for the
development of an extended controller that will unify all
control functionality in one component.

§ The observed two seconds offset is due to an
implementation artifact that has been identified and will
be eliminated in a future release of the software.

ACKNOWLEDGEMENTS
The authors thank the other members of the TDAQ

Wide Run Control group, Giovanna Lehman, Sarah
Wheeler-Ellis and Haimo Zobernig for their engagement
in the design of a better controller for the ATLAS TDAQ
system. We would also express our gratitude to the
ATLAS Dataflow and High Level Trigger systems for
excellent collaboration.

REFERENCES

[1] Atlas Online Software, http://cern.ch/atlas-onlsw .
[2] D. Burckhart et al., Large Scale and Performance

Tests of the ATLAS Online Software, Proceedings of
CHEP 01, Beijing, (2001).

[3] ATLAS High Level Trigger, Data Acquisition and
Control TDR, CERN/LHCC/2003-022, (2003),
http://cern.ch/atlas-proj-hltdaqdcs-tdr .

[4] Online Software Requirements, Internal Note (2002)
http://cern.ch/Atlas-onlsw/documents/doc/
OnlSw_Req_05.pdf .

[5] Online Software Architecture, Internal Note, (2002)
http://cern.ch/Atlas-onlsw/documents/doc/
OnlSWArchitecture_03.pdf .

[6] TDAQ Wide Run Control group, Controller
Requirements, ATL-DQ-ES-0054, (in preparation).

[7] P.J. Lucas, An Object-Oriented language system for
implementing concurrent hierarchical, finite state
machines, MS Thesis, University of Illinois, (1993).

[8] CLIPS, A tool for building expert systems,
http://www.ghg.net/clips/CLIPS.html .

[9] Jess, the Java Expert System Shell,
http://herzberg.ca.sandia.gov/jess .

[10] Eclipse, Rule based programming language and
inference engine,
see under ‘products’ on http://www.haley.com .

[11] SMI++, State Management Interface,
http://cern.ch/smi .

[12] Python, interpreted, interactive, object-oriented
programming language
http://www.python.org .

[13] C.Forgy, Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem,
Artificial Intelligence, 19, (1982).

[14] Large Scale Performance Tests March 2004, Internal
Note, (in preparation).

[15] V. Bahyl et al., Experience constructing and running
large shared clusters at CERN, Proceedings of CHEP
01, Beijing (2001).

http://cern.ch/atlas-onlsw
http://cern.ch/atlas-proj-hltdaqdcs-tdr
http://cern.ch/Atlas-onlsw/documents/doc/�OnlSw_Req_05.pdf
http://cern.ch/Atlas-onlsw/documents/doc/�OnlSw_Req_05.pdf
http://cern.ch/Atlas-onlsw/documents/doc/�OnlSWArchitecture_03.pdf
http://cern.ch/Atlas-onlsw/documents/doc/�OnlSWArchitecture_03.pdf
http://www.ghg.net/clips/CLIPS.html
http://herzberg.ca.sandia.gov/jess
http://www.haley.com/
http://cern.ch/smi
http://www.python.org/

	CONTROL IN THE ATLAS TDAQ SYSTEM
	INTRODUCTION
	THE CONTROL SUBSYSTEM
	Supervision

	TECHNOLOGY CHOICE
	Evaluations

	DESIGN AND IMPLEMENTATION
	Framework
	Components

	TESTS AND VERIFICATION
	Scalability test
	Test beam

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

