
EXPERIENCES WITH THE GL ITE GRID M IDDLEWARE

B. Koblitz∗, CERN, Geneva, Switzerland
T. Chen, W. Ueng, Academica Sinica Computer Centre, Nanking, Taiwan;

J. Herrala∗, M. Lamanna, D. Liko, A. Maier, J. Mockicki† , A. Peters, CERN, Geneva, Switzerland;
F. Orellana‡ , CERN/University of Geneva, Switzerland;

V. Pose, Joint Institute for Nuclear Research, Dubna, Russia;
A. Demichev, Moscow State University, Moscow, Russia;

D. Feichtinger§ , Swiss Institute of Particle Physics, Switzerland

Abstract

gLite is the grid middleware being developed by the
EGEE project. In May 2004 a prototype was delivered to
the ARDA project which has the task of providing proto-
type grid systems for the LHC experiments. We describe
our first experiences with the gLite prototype and present
the results of studies of its individual subsystems.

INTRODUCTION TO THE ARDA
PROJECT AND GLITE

The ARDA project (A Roadmap to Distributed Anal-
ysis for LHC) was started in April 2004 to build grid-
based analysis prototypes together with the four LHC ex-
periments using the software developed by the EGEE (En-
abling Grids for E-Sciences in Europe) project which was
launched at the same time. To fulfill its task, the ARDA
group works as an interface within the EGEE project to the
LHC experiments, collecting and communicating the needs
of the high energy physics (HEP) community to the EGEE
middleware developers, and adapting existing experiment
software to the EGEE framework.

gLite is the prototype software provided to the ARDA
group by the EGEE project on May 18th 2004. It is
strongly influenced by the Alien software developed by the
ALICE collaboration and by the experience of many soft-
ware projects among them EDG, Condor and Globus. The
task of the EGEE project is to evolve this prototype into a
fully featured and easily installable grid middleware. The
time frame to achieve this is two years.

ACCESSING GLITE

The first contact to any grid middleware is made by a
user by logging into a grid system. gLite uses X.509 cer-
tificates as grid credentials using the Globus 2.4 GSI (Grid
Security Infrastructure) framework software to handle au-

∗Funded by the German Ministry for Education and Science, Berlin,
Germany

† Funded by Particle Physics and Astronomy Research Council, UK
‡ Financial support from the Paul Scherrer Institute and the European

COST Action Nr.283
§ Financial support by the European COST Action Nr.283

thentication, authorisation and encryption1 via SSL and the
GSSAPI.

In order to sign on to such a grid, the user first needs to
acquire a certificate and sign up to a virtual organisation
(VO) to become part of a group sharing resources on the
grid. Unfortunately, these two steps turned out to be not
easily overcome and it took some users several weeks to
sign up: since the certificates are supposed to fulfill high
security standards, personal identification was necessary at
the issuing authority (CERN). Then the certificates had to
be loaded into a web browser to request membership at
the VOMS (virtual organisation management system). The
overall procedure turned out to be complex and time con-
suming. Clearly there is room for improvement.

THE GLITE SHELL

gLite offers an interactive shell to users to access the grid
services. The shell is implemented as a client which the
user starts up and within which the user can issue com-
mands similar to those in a standard Unix shell.

Central to the system is the file catalogue which is or-
ganised in a hierarchical way similar to a file system. Com-
mands similar tols or rm can be used to list or remove file.
Adding files into the file catalogue can be done in two dif-
ferent ways: by adding a reference to an existing file in an
accessible storage element or by specifying a file URL in
which case the file is first copied to a (selectable) storage
element before such a reference is made.

Since all shell commands withing gLite are implemented
especially for gLite, several more advanced shell features
are not implemented, namely the possibility to pipe out-
put from a command into another one, thus denying the
user to build more complex functionality using the exist-
ing commands as building blocks. Also, although over 70
commands are provided, the functionality of the shell is far
from the functionality of several hundreds of commands
offered by a normal Unix shell.

A solution to these problems can only come from adding
command line tools which can be called from within a stan-
dard Unix shell. To build these stand-alone clients, the

1The connections from the user client to the services are currently not
encrypted.

ARDA project has implemented a C API and created a li-
brary of POSIX file access and directory browsing func-
tions which are used to implement the necessary com-
mands, as described later.

JOB SUBMISSION

Jobs can be submitted from within the gLite shell via a
small job description script which specifies which files are
to be first copied to the node, which executable is then to
be run and which files are afterwards to be copied back into
the grid. For this to work, the job description file and the
executable need to be accessible in the virtual grid filesys-
tem.

The job submission scripts also allow more advanced
features like forwarding arguments given to the submit
command to the application later run, the definition of
packages which contain software installed on the nodes in
some specialised disk area prior to starting the job’s appli-
cation and even the splitting of jobs based on directories or
files automatically. This job splitting allows the creation of
a master job which can be later referenced for handling the
whole group of created sub-jobs. For tracing this group of
files, killing the job or retrieving output, all operations can
be done to the master job and will apply implicitly also to
the rest of the sub-jobs.

Currently jobs are run on three worker nodes located at
CERN (two) and in Madison (one), which form two com-
puting elements which are seen by gLite as two different
entry points. The operating systems are CERN Linux 7.3
and Scientific Linux 3 (one node at CERN). During job
submission only the compute element can be chosen, no
option is available to select the operating system which
must be provided by the worker node.

The ARDA team has set up a monitoring system for the
job processing system of gLite, which submits a simple
job every hour into the job queue of the compute element
at CERN. The success of these jobs can be seen in Fig.1
where the time it took a successfully run job to start up af-
ter submission is plotted versus the time of the submission
of the job. Failing or crashing jobs are also indicated. In
total a success rate of jobs of 80% is achieved, but this num-
ber must be related to the fact that only a few worker nodes
are being used and the job only returns a simple string, that
is, it does not depend on further external resources. The
low number of worker nodes effectively prevents problems
with badly configured worker nodes which may attract jobs
which afterwards fail, a common problem for larger scale
systems.

PACKAGE MANAGEMENT

The possibility to create software packages has already
been mentioned in the description of the job submission
process. This capability of gLite allows the user to require
that certain tar archives, which are accessible via the vir-
tual filesystem of gLite, are unpacked on the worker node

into a dedicated disk space prior to the job’s binary being
started. These packages can contain additional libraries,
additional executables or common data needed for job exe-
cution. The job description files allow the users to specify
scripts which are run before and after installation of the
packages which allows the user to set up these packages,
for example setting up the PATH or LDLIBRARY PATH
variables. These scripts also alleviate the problems caused
by the fact that the packages are unpacked into a space in
the filesystem of the worker node a priory unknown during
package creation.

While the job submission scripts allow a high flexibility
to allow basically all software packages to be set up out
of a tar archive, this flexibility has to be weighted against
the inflexibility for requiring certain capabilities of the the
worker node in the first place by stating them in the job
submission script. The burden to create a suitable environ-
ment for jobs to run on the node lies entirely by the user:
he needs to provide every software package he needs, even
C compilers or certain system libraries, which need to be
compiled by the user and set up correctly — a task that is
potentially very difficult. It would be a great relief for the
user to be able to set certain requirements at least on system
libraries which the worker nodes need to provide in order to
be able to run certain jobs. However, the greatest relief for
the user would certainly be if capabilities of worker nodes
could be made available temporarily on demand like instal-
lation of additional system libraries in a separate space of
the worker nodes file system.

FILE ACCESS

Files can be accessed from the prototype installation
of gLite in two storage elements (SE): the CASTOR[2]
and dCache[1] storage systems which both are disk-based
caching frontends to tape-based large data stores. Both SEs
have been set up twice in Madison and at CERN.

The availability of the SEs are paramount for the ARDA
project because they allow access to experiment Monte
Carlo generated data files already present on tape storage.
This data is needed to run jobs which are already run by
the experiments for processing event data. This capabil-
ity is also important to attract experiment users who would
want to perform their individual analysis tasks.

The CASTOR storage element was the first to be set up
and the process revealed many problems of the deploy-
ment of grid middleware which needs to access existing
resources, in this case the existing CASTOR system at
CERN. Since users of the grid lose their identity in the
sense of a UNIX user, and are only identified by certifi-
cates, they have to access a resource like CASTOR, which
was designed to allow UNIX users access based on their
user ID, via a single user which has no access restrictions.
Setting up CASTOR correctly and the storage elements
software which takes over access permissions checking,
took several months and was mainly hindered by the com-
munication between the concerned parties from the gLite

0

100

200

300

400

500

600

700

800

900

1000

07/01 07/15 07/29 08/12 08/26 09/09 09/23

W
ai

tin
g

tim
e

to
 e

xe
cu

te
 [s

]

Submission time

Glite queue monitoring Date: Mon Sep 20 13:05:23 2004

Jobs executed <1000s after submission
Jobs failed/killed

Jobs waiting > 1000s in queue

Figure 1: Plot showing the failure rate and the waiting time until execution starts for successful jobs. The rate of success
is about 80% for very simple jobs (see text).

development and deployment team as well as users and the
people responsible for the storage system.

METADATA

The gLite prototype software stores its metadata together
with file related data in the file catalogue which is using a
MySQL RDBMS backend to store the data. The user can
updload database table schemas into the file catalogue and
declare them to be the metadata schema of all files within
a directory. Internally, the possible metadata keys form the
columns of a table which has all the files of a directory as
its rows. The user can later on associate values on a per file
basis with these keys.

Fig.2 first shows the performance of the catalogue for
inserting files and associating metadata. The performance
degradation for large directories is due to the fact that the
files’ data is stored in a single large table, which degrades
the performance of the MySQL backend.

ARDA has studied the behaviour and performance of
several experiment metadata solutions (see [3]) with an em-
phasis on the behaviour of the performance of concurrent
access of many clients with queries generating large re-
sponses. Implementing a solution which scales for such
queries using a web-service based client interface is a de-
manding task. gLite uses a streaming-based solution where
the result is transferred to the client as text. Fig.3 shows
the behaviour of gLite for such an access pattern. As can
be seen, the response time to fulfill all of the concurrent

FC insertion
Attach MD

Files

Fi
le

s/
s

[1
/s

]

 0

 2

 4

 6

 8

 10

 1000 10000 100000

Figure 2: Upper curve: time to insert files into the Metadata
catalogue (only adding a reference to a file already stored
in a Storage Element!). Lower curve: time to attache some
metadata to these files (5 properties, 36 bytes in total).

requests rises linearly with the growing number of clients
indicating the good scalability of the server model when
dealing with many clients as well as a low memory foot-
print of the processes serving the requests. This behaviour
contrasts strongly with other implementations, which first
prepare the full response, pack them into e.g. a SOAP mes-
sage and dispatch them eventually. This leads to a break-
down of the server performance for either large responses
or large numbers of concurrent client connections.

The users can define schemas in gLite flexibly, as it al-
lows to define arbitrary keys with arbitrary data types, as
long as they are supported by the underlying SQL backend.

Ti
m

e
to

 c
om

pl
et

e
[s

]

Number of Clients

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

Search Time

Figure 3: Time to complete several concurrent search re-
quest by a growing number of clients selecting 2500 files
out of 10000 files stored in a directory. The total time scales
linearly with the number of clients showing the good scal-
ability of the server with the number of clients and the total
size of the data to be served.

In addition, the solution is very performant because search-
ing in the SQL tables can be done within the database itself
and since the tables are stored in the same database as the
file related data. In this case searches for files fulfilling
certain criteria with their metadata are easily implemented
and performant. The drawback is that schemas cannot be
evolved and the application must be aware of the underly-
ing schema since there is no way the schema can be dis-
covered. However, it seems such features could be added
to the existing implementation.

FUTURE DEVELOPMENTS

One of the largest problems for the ARDA developers
who want to adapt existing experiment software to work
within the gLite grid was the lack of a C/C++ API. ARDA
has therefore developed a generic C/C++ interface to the
services of gLite. The interface consists of a generic web-
service and a client library with a C/C++ API. The client
sends the PERL structures, which are used to communicate
with the gLite services, by first UUEncodeing their data,
then encrypt the resulting ASCII-only text using OpenSSL
and finally send the command using the SOAP protocol.
This approach thus provides in addition generic encrypted
web-services to all gLite functionality. This increases the
performance of the encrypted service: the clients first per-
form an authentication procedure during which shared se-
crets are exchanged between client and server, which later
makes communication possible without the need for further
authentication steps.

SUMMARY

The EGEE project delivered a fully working prototype
of grid middleware which is now being evaluated by the
ARDA team and used to set up grid middleware prototypes
for the four HEP experiments at LHC. In the future this
prototype is expected to evolve based on the experiences
gained by users of these analysis prototypes. The collab-

oration with the EGEE project team was very successful
and many problems have been solved. The prototype looks
very promising with the functionality it offered.

ACKNOWLEDGEMENTS

The ARDA project members wish to express their grat-
itude to the many EGEE developers which have strived
very hard to develop and deploy a working prototype of
the gLite software which is now used as a basis for grid
services for the LHC experiments. We would also like to
thank all the EGEE members for the excellent collabora-
tion.

REFERENCES

[1] http://www.dcache.org

[2] http://castor.web.cern.ch/castor/

[3] J. Andreevaet al. [ARDA project], http://lcg.web.cern.ch/-
lcg/PEB/arda/publicdocs/CaseStudies/refdbdraft v0.2.pdf;
B. Koblitz et al. [ARDA project], http://lcg.web.cern.ch/-
lcg/PEB/arda/publicdocs/CaseStudies/aminew.pdf

