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Abstract 
  As ATLAS begins validation of its computing model in 
2004, requirements imposed upon ATLAS data 
management software move well beyond simple 
persistence, and beyond the "read a file, write a file" 
operational model that has sufficed for most simulation 
production.  New functionality is required to support the 
ATLAS Tier 0 model, and to support deployment in a 
globally distributed environment in which the 
preponderance of computing resources—not only CPU 
cycles but data services as well—reside outside the host 
laboratory.  This paper takes an architectural perspective 
in describing new developments in ATLAS data 
management software, including the ATLAS event-level 
metadata system and related infrastructure, and the 
mediation services that allow one to distinguish writing 
from registration and selection from retrieval, in a manner 
that is consistent both for event data and for time-varying 
conditions.  The ever-broader role of databases and 
catalogs, and issues related to the distributed deployment 
thereof, are also addressed.  

INTRODUCTION 
ATLAS data management software has been deployed 

at multi-terabyte scales in recent years, but a 2004 data 
challenge (Data Challenge 2) provides the first real test of 
many of its capabilities.  In earlier deployments, it 
sufficed to support a “file in, file out” model of 
processing:  generate files of events, simulate them, 
superpose pileup events, digitize them, reconstruct them, 
and analyze them.  The basic processing pattern was to 
iterate over the input events in a file, process them, and 
write the results into a new file.  In Data Challenge 2, 
ATLAS will mix event streams to produce samples that 
resemble what is expected to come off of the detector via 
the high level trigger, and will exercise the processing 
chain planned for the Tier 0 center at CERN to build 
Event Summary Data (ESD), Analysis Object Data 
(AOD), and TAG databases to support event selection.  
These data will be distributed to remote sites for analysis 
in a manner consistent with the proposed ATLAS 
computing model.   

New (or newly utilized) capabilities include support for 
multiple, possibly overlapping output streams, support for 
collection building using registration services, and back 
navigation with policy control.   

A great deal of effort has gone into articulation and 
refinement of the ATLAS event model and into its 
persistification, which is still limited by the capabilities of 
the primary technologies upon which the ATLAS event 
store will be based:  the LHC Computing Grid (LCG) 
Project’s common persistence infrastructure POOL [1], 
and the ROOT [2] software upon which POOL’s file-
based storage relies.  The associated difficulties in 
persistification and how they have been addressed are 
beyond the scope and size limitations of this paper.   

STREAMS AND COLLECTIONS 
 
First-pass reconstruction processing will divide output 

events into multiple streams.  While the database software 
imposes no restrictions on the number of streams, on 
whether streams may overlap, and on stream-specific 
specification of event data content, the Data Challenge 2 
model is that the numbers of streams is small (~10), that 
streams are disjoint, and that streams share the same 
content definition.  This choice may be revisited after the 
data challenge, but the rationale is that unless one can 
provide reassurance that no one in the ~2000-person 
collaboration will want to analyze samples that cross 
stream boundaries, this is the safest strategy:  otherwise, a 
cross-stream sample would find certain data available for 
some events and not for others, depending upon the 
stream from which the events were extracted, and one 
would need safeguards against the very real possibility of 
processing the same event multiple times.   

In this model, streams serve principally as physical 
clustering optimizations—they are not necessarily the 
units of input to physics analyses.  The latter is the role of 
collections.  The idea is that, while first-pass 
reconstruction will write events exactly once, references 
to those events will be recorded in as many physics 
collections (event lists, really) as might want them, along 
with associated metadata (“tag” data) to support more 
detailed event selection.  Higgs candidate events, for 
example, might not get their own stream, but they would 
almost certainly get their own collection; moreover, one 
could imagine two very similar samples, differing only in 
their cuts, being instantiated as two different collections, 
but not as two different streams.     
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WRITING AND REGISTRATION 
The distinction between writing and registration is an 

architectural motif that is increasing in prominence in the 
ATLAS data management framework:  there is a 
difference between storing an object and remembering 
where you put it.  When phrased this way, the distinction 
may appear obvious, but a great deal of work may be 
done—and indeed has been done by many experiments—
without ever formalizing the difference.  In simulation 
production and analysis, for example, one reads all the 
events in a generator file and writes all the events into a 
hits file, or reads a file of digitized events and writes a file 
of reconstructed events.  Except for remembering the file 
names, one does not need to record where individual 
events have been stored.  The only registration happens at 
the file cataloguing level.   

The same phenomenon may be observed in many 
conditions database products [3, 4], in which one often 
cannot write a conditions object without assigning it an 
interval of validity.  An ATLAS design contribution (and 
an ATLAS requirement) to the LCG common project on 
conditions data management has been the architectural 
separation of payload storage from registration in a 
temporal database.  

The ATLAS control framework (Athena) endeavors to 
provide a consistent view of writing and registration 
processes for all kinds of data.  In Athena, “outstreams” 
are used to control the writing of data objects.  When an 
object is written, a token, opaque to the user, is returned.  
On input, this token is used by persistence services to 
locate and return the object of interest.   

The ATLAS control framework supports the notion of 
registration services, wherein one can record an object’s 
token, along with optional metadata that may later be 
used to help decide which objects are of interest.  The 
registration model is the same for event and non-event 
data:  only the concrete type of the registration service 
changes.  For event data, event collections, currently 
based upon POOL collections, provide the repository in 
which registration information is retained.  This is how 
ATLAS tag databases are constructed:  users record 
references to events, along with metadata that might be 
used for later event selection.    For conditions and 
calibration data, a temporal database serves as the 
registration service, recording references to the data, 
along with associated metadata—in this case, an interval 
of validity, a folder name (used to organize conditions 
data types), a tag, and so on—but the registration motif 
remains the same.  (As an implementation optimization, 
one may choose to store conditions data on the same 
server, and even in the same database, as the temporal 
database that mediates access, but the architectural 
distinction between writing and registration, and between 
payload and metadata, remains.)   

COLLECTIONS IN PRACTICE 
If the collections model is successful, event collections 

will permeate the ATLAS analysis environment.  A 
simplified scenario for event selection might be: 

• Query collection-level metadata in a collection or 
dataset catalog to identify a collection of interest; 

• Apply a filter predicate (query) to the collection to 
build a list of events of interest—the result is  
another collection; 

• Extract the list of unique file ids from the resulting 
event list, to give to grid resource brokers for 
resource acquisition and scheduling; 

• Move the collection of selected events (file-
resident) into the job sandbox as input to the 
analysis—the job will iterate over these events and 
no others. 

 
Note that this is an oversimplification, in that the 

resulting collection would, if large, be partitioned on file 
boundaries, and multiple jobs corresponding to the input 
partitioning would be submitted to analyze the sample, 
with an output concatenation step at the end.  Work is in 
progress along these lines in the ATLAS Distributed 
Analysis (ADA) project.   

For Data Challenge 2, ATLAS has deployed the 
utilities to extract into a file the references to qualifying 
events as the output of a query, and to build the list of 
unique file ids needed by a grid resource broker.  
Additional utilities to build tailored samples with specific 
content have also been delivered, e.g., to extract into a 
physicist’s personal files the ESD, say, for all events that 
satisfy a given query to the TAG database.   

BACK NAVIGATION 
We use the term back navigation to refer generically to 

the machinery to support retrieval of data produced in 
earlier processing stages, e.g., the ability of a reader of 
AOD to retrieve data in ESD, or even RAW or MC 
TRUTH data objects.  In the ATLAS framework, there 
are two mechanisms by which back navigation might be 
accomplished.  The first is by following direct references 
between data objects.  In this case, the store is agnostic to 
processing stages, and simply follows the persistent 
pointers, assuming that data are locatable.  The second 
mechanism is by “name” (in ATLAS, this is by data type 
and user-assigned key):  a physicist may attempt to 
retrieve by name from the transient store any object that 
was saved in earlier processing stages.  Data lookup and 
delivery is by recursive delegation:  the input event 
(AOD, say) is asked whether it can deliver an object with 
that name; if not, it asks its parent (ESD) the same 
question, and so on until the object is found or the 
upstream data stages are exhausted.   

While the database software supports arbitrary back 
navigation, the framework also delivers “policy hooks” to 
allow control (including depth control) of back 
navigation.  In the ATLAS computing model, it is likely 
that back navigation from AOD to ESD, while 



theoretically possible anywhere, will be routinely 
supported at Tier 1 centers, which host both AOD and 
ESD, but will be unsupported or costly at sites that locally 
host only AOD (e.g., at Tier 2 centers and beyond).   

A component strongly related to back navigation 
support is provenance management.  Each persistified 
event retains a reference to its parent.  When one 
produces ESD from RAW and AOD from ESD, the 
provenance is obvious, but what happens when 
RAW ESD AOD is accomplished in a single job via 
concatenation?  Additional machinery is required to 
ensure in this case that ESD and AOD do not both believe 
they are the daughters of the RAW input event, and 
instead to ensure that AOD “knows” that ESD is not its 
sister, but its mother.  .   

ON SIMPLE PERSISTENCE 
 
In the early stages of a software project, simple 

persistence is a boon.  Developers appreciate the ability to 
write their objects (or, more accurately, their object states) 
and read them back later, without worrying about schema, 
transient-to-persistent conversion, and persistent data 
organization.  Such a capability may speed development, 
but it comes at a cost:  the persistent store, rather than 
having an explicit design, is built, de facto, of snapshots 
of the transient data model at the time that data producers 
finish execution, and a reader’s view of the data must be 
the writer’s view.   

Object orientation in some ways exacerbates this 
potential problem.  With ntuples, one can in principle 
retrieve only the attributes of interest to an analysis, 
whereas object persistence mechanisms in general allow 
one only to retrieve and rebuild in their entireties objects 
as they were written, not to gather selected (usually 
private) attributes from a variety of objects and 
reconstitute them into a new object.   

Relational databases usually do better than this:  one 
can write tables with a great many columns, and, via a 
query, extract exactly the columns one needs.  With a 
typical object persistence infrastructure, one cannot write 
FullTracks and retrieve ParameterizedTracks; one must 
first retrieve sufficient data to rebuild FullTracks, and 
only then project them onto ParameterizedTracks. 

Many developers expect that schema evolution will 
help them manage a collaboration’s evolving view of its 
data, and it may.  The LCG POOL project will deliver 
some schema evolution support in Release 2.0, based 
upon ROOT 4’s schema evolution capabilities.  Such 
capabilities may handle simple cases (addition or removal 
of a data member; data member type changes), but more 
substantial refactoring of an experiment’s event model—
even alterations as natural as adding association objects 
rather than relying upon direct pointers—will require 
substantially more than schema evolution is likely to  
provide.   

An object persistence infrastructure tends to be 
ambiguous in many areas, especially those related to 

object identity, equivalence, and substitutability:  If I 
write an object state, then copy it to a different location, is 
it the same object, is it different but substitutable for the 
original, and how do I find it?  If I instead write the object 
twice (for example, to two different streams), are the two 
instances equivalent, and how do I know?  Are these 
answers different if the state of the transient object 
changes between writes, and how is this managed?   

BEYOND PERSISTENCE 
 
To move beyond simple persistence, several 

developments are required.  The ATLAS software 
supports separation of transient and persistent type 
identification, so that, in principle, one can deliver a 
system that, on input, asks, “Can I build a transient object 
of type A from the a persistent state object with shape B,” 
rather than exclusively restoring As from As and Bs from 
Bs.    The LCG POOL infrastructure, in response to 
ATLAS requirements recorded in the Requirements 
Technical Assessment Group (RTAG) report that served 
as the charter for POOL, provides hooks to make this task 
easier, but they have not been utilized by any experiment 
to date.  Such capabilities will be essential to support 
reader’s views that are not writer’s views, and to support 
the kind of event store evolution that one must anticipate 
for long-lifetime experiments such as ATLAS.   

A multi-petabyte event store will require a 
sophisticated metadata infrastructure and navigation 
machinery to ensure that data of interest can be efficiently 
identified, located, and accessed.  ATLAS has begun to 
deploy such an infrastructure; its 2004 data challenge will 
provide early feedback regarding the viability of the 
proposed ATLAS event store design.    
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