
A DATABASE PERSPECTIVE ON CMS DETECTOR DATA

A.T.M. Aerts, Eindhoven University of Technology, Eindhoven, The Netherlands
F. Glege, M. Liendl, CERN, Geneva, Switzerland

Abstract

Building a state of the art high energy physics detector
like CMS (Compact Muon Solenoid) requires strict
interoperability and coherency in the design and
construction of all sub-systems comprising the detector.
This issue is especially critical for the many database
components that are planned for storage of the various
categories of data related to the construction, operation,
and maintenance of the detector like slow control data,
conditions data, calibration data, and event meta data. The
data structures needed to operate the detector as a whole
need to be present in the database before the data is
entered. Changing these structures for a database system
that already contains a substantial amount of data is a
very time and labour consuming exercise that needs to be
avoided. Cases where the detector needs to be treated as a
whole are detector operation (control, error tracking,
conditions monitoring) and the interfacing of the
reconstruction and simulation software.

In this paper we propose to use the detector geometry
as the structure connecting the various elements. The
design and implementation of a relational database that
captures the CMS detector geometry and the detector
components is discussed. The detector geometry can serve
as a core component in several other databases in order to
make them interoperable. It also provides a common
viewpoint between the physical detector and its image in
the reconstruction software. Some of the necessary
extensions to the detector description are discussed.

CMS DATABASES
In a recent overview of the CMS databases [1] four

types of databases were distinguished that describe
aspects of the detector:

• Construction databases
• Equipment Management database
• Configuration database
• Conditions database
This characterization follows the phases in which the

knowledge about the detector is built up. It does not imply
that the databases will also be implemented in this way.

The construction databases hold the information about
the sub-detector construction, which covers the design
parameters, the construction process and the concluding
tests for each detector component.

The equipment management database (EMDB) [2]
details the location of each detector component in the
detector assembly, as well as that of the peripheral
components in and near the experiment hall, as well as
their connections. One of its uses is the tracking of all

detector components from the moment of creation to the
moment of disposal for the purpose of complying with the
INB (Installation Nucleaire de Base) regulations.

The configuration database holds all information
required to bring the detector in any running mode. This
includes the parameters and other settings that are
downloaded at the time the (sub-) detector is put into an
operational state.

The conditions database holds all information needed
for event reconstruction, except the event data itself. This
involves data on slowly varying observables, such as the
temperature and gas pressure in the experiment hall, but
also on the much more quickly varying statuses of the
sensitive detector elements. Note that much of the
configuration data that has been downloaded into the
detector becomes conditions data, when it is read back to
provide the initial or start-up state of the detector.

At present, the construction databases for the sub-
detectors are operational, the EMDB is operational but
still being extended, and the other databases are mostly
still in the design phase. A detailed overview of the
current status of these four types of information and their
mutual dependencies can be found in [3].

The event data is filtered by the on-line reconstruction
software, tagged and then stored for further off-line
analysis.

Development Risks
In the CMS collaboration (and also in the other

collaborations), the development of the information
models and the usage of the information often go hand in
hand. Several implementations are being developed on a
trial and error basis , guided by local needs. This
observation can be illustrated by the case of the
Construction databases. Even though a common solution
has been proposed that was expressive enough to cover all
situations [4], local, sub-detector, and even production
site specific solutions were developed that were made
optimal for the local situation. The result is a collection of
heterogeneous databases, implemented in diverse
technologies , often accessible by proprietary interfaces
only (see [3]). Although some of the data in these
databases are only of local interest, another part of them
describes properties of the detector components that is of
interest to the EMDB and should be integrated into it. To
make these data interoperable with those of the EMDB
will require as many conversion programs as there are
Construction databases . This statement assumes that all
conversion can be done automatically and does not
require manual intervention. An alternative is to transfer
the relevant data into the EMDB and make them available

from there. This can be done only when the construction
data has been consolidated and has become read-only, to
avoid the risk of divergence of the various copies of the
data. Also this option will require the inevitable
conversion programs.

When we translate this situation to the context of on-
line reconstruction or on-line error tracking, it is clear that
one wants to avoid the situation that there will be as many
variants of the conditions data as there are sub-detectors,
or worse. The timing constraints for processing these data
are much more severe and one will want to avoid the
performance losses due to unnecessary conversions.
Neither does one want copies of the same data in various
locations to avoid inevitable inconsistencies and the load
of managing (huge quantities of) redundant data.

The problem of technological heterogeneity has been
tackled by standardizing on one database technology for
the on-line databases, Oracle. This leaves the
heterogeneity at the modeling and the syntactic level to be
dealt with.

DETECTOR GEOMETRY DATABASE
In the previous section it was observed that so far many

sub-detector databases have been developed on a trial and
error basis, guided by local needs. On the basis of a
working version of a model, one can establish on what
points the model satisfies the often still tacit requirements
and on what points it does not. This can be a good way to
elicit hidden requirements and conduct performance
studies, and it is a common practice in software
engineering. This has also been the way of working for
the detector description used in the simulation and
reconstruction software (see [5] and [6]). However, it is
not the way to proceed for databases containing
information that needs to be globally accessible. The data
structures needed to operate the detector as a whole need
to be clear before the data is entered into the database.
Changing these structures for a database system that
already contains a substantial amount of data is a very
time and labour consuming exercise that needs to be
avoided. A better approach is to try to identify the
concepts that are common and shared among the various
users of the information and use these as a global access
point. As has also been noticed by others ([4], [5]), the
detector geometry appears to be a good option for this
purpose.

The detector geometry is implicitly present in all the
detector related databases (all physical components have
spatial dimensions), and explicitly in the analysis and
reconstruction software, where the detector is regarded as
an assembly of shapes with particular material properties.
As such, it can serve as an intuitive shared interface
between the data and the software world, once it has been
made explicit in the databases.

The nominal detector geometry in principle is also a
rather stable part of the description. It will only change,
when one of the sub-detectors is moved with respect to
the others or is replaced by a differently shaped one. This

is a rather infrequent occurrence: perhaps once every five
years.

The detector and its supporting equipment can be
modeled as a hierarchy based on the container-contained
relationship between detector parts (see [5]). Many
detector parts can be viewed as composed of parts or
components that may in turn be composite themselves. In
the geometry description the volume or space that each
physical detector or peripheral part will occupy is
modeled, not these parts themselves. Such a volume is
called a CMS Slot. The containment hierarchy is
represented in Figure 1 by a Simple Tree pattern ([7],
consisting of the CMS Slot and its self referencing
aggregation relationship. (We represent the models by
means of UML (Unified Modeling Language) class
diagrams [8], using database stereotypes.).

The CMS Slot represents a Bill of Materials structure
for the detector to which spatial information (Nominal
Location) has been attached for the location of the slots in
the detector as designed. The latter is given in terms of
the absolute positions and orientations of all volumes with
respect to the detector frame of reference.

For a complete geometrical description, also descriptive
information such as the shape of the slots is needed. Since
the detector itself is a fairly symmetrical construct, a Slot
Type has been introduced to capture descriptive
information which is common to a number of slots, such
as a shape, modeled as the Solid, and possibly some other
properties. This information, together with the Nominal
Location, can be used to construct a 3D-representation of
the detector (see [8]). Note that there are some constraints
to be satisfied by the descriptions. For instance, the solid
of a container should encompass all solids of its contained
components.

The data model can handle all information about the
detector model that is used in the simulation and
reconstruction software, but it is not limited to that. Its
structure is suited for capturing both finer details (further
decomposition), and information about peripheral

Figure 1 Detector Geometry

structures such as the racks with the measuring equipment
and power supply units that are partly co-located with the
detector, partly located elsewhere. This is made explicit in
Figure 1 by the introduction of special Slot Types, such as
the Detector Slot Type and the Peripheral Slot Type that
represent volumes that will be occupied by a detector or a
peripheral part, respectively. These sub-types will have
distinguishing characteristics of their own.

The information in the database can be used for a
number of purposes, such as visualization of the detector
during construction, integration and operation. The CMS
Slot is a core construct for a number of applications. First
of all, it serves to integrate the sub-detectors. In Figure 1
it also serves as a point of reference to attach location
information. In the same way, alignment (deviations from
the nominal location), calibration, and configuration
information can be attached to it . This is further illustrated
in Figure 2, where the occupancy of a slot by a detector
component is modeled. The component may have
alignment data associated with it and is sub-typed to
represent the various sub-detectors with their own
characteristic properties, and associated configuration and
conditions data (exemplified by the Pedestals). In Figure
2 some UML class symbols have been replaced by an
(non-UML) database symbol to represent the fact that
data about components and alignment, and so on, has a
much more comp lex structure than a simple class.

IMPLEMENTATION ISSUES
A prototype implementation of the detector geometry

database in Oracle 9i has been made, which is discussed
in [9]. The prototype has, including indices, a size of

about 600MB. The data for the database was taken from
the DDD (Detector Description Database) [5] used in the
simulation software. In addition to the slots occupied by
the physical detector parts, the DDD also adds a number
of intermediary levels to the detector hierarchy that serve
to group a number of components. This is both for easy of
data entry, and for ease of representing the geometry in
the simulation software. Not all of these intermediate
levels are needed for the geometry database, which will
reduce its size.

The data model prototype was designed from first
principles, and not generated as was done in [10].
The reason is that the structure of the DDD is captured in
XML Schema, which is quite suited to specify document
structures but lacks expressiveness when it comes to
specifying useful database structures.

Depending on the implementation of the various
detector databases, the geometry database can be a central
part of one large database which encompasses the four
database types mentioned above, it can be a (read-only)
component in each of a number of separate
implementations, and it can be implemented as an
independent database from which the other databases are
accessible.

An important implementation point is that a common
geometry also implies a common identification scheme.
Since the identification of slots (slot-id) is kept
independent of that of the components , the slots can be
taken as an independent point of reference to provide
geometry based global access. From the slot-id the
nominal position in the detector should be deducible and
vice versa. The slot ids should have a two level structure.
The higher level would point to volumes that are
interesting to the off-line software. The second level
would point to positions taken by components (chips, or
boards) that are relevant for configuration settings but too
detailed for the simulation and reconstruction software.

Note that once the ids have been assigned and the
database has become operational, the ids can only be
changed at a very high cost, since they will propagate
across all data.

Note that in the DDD no explicit id-scheme is
proposed: volumes are distinguished by their position in
the detector hierarchy, obtained by following the path
from the full detector volume (the root of the hierarchy).
This comes from the fact that the DDD is stored in a
compact form where information that is common to a
number of components is stored only once [5]. This
compact description can be read in quickly and is
expanded in memory to generate all individual shapes.
The matching of detector components in the on-line
databases to the volumes in the software detector model is
therefore a major concern and has to be solved to support
the usage of, e.g., conditions data in the simulation and
reconstruction processes. The match between the slots in
the database and those in the software based model will
have to be done at the level of sensitive and support (e.g.,
yokes) parts which correspond to the stable part of the
software model. However, one cannot use the software

model to generate ids, because the model as a whole is
still subject to change, as intermediate grouping levels are
added or omitted. These changes will affect the ids that
are generated. One possible strategy to establish
correspondence is by embedding the database slot ids into
the software detector description. Since the detector
model for the simulation and reconstruction software is
composed by hand, this will be a manual task. Great care
will have to be taken to leave the thus augmented part of
the software model invariant under subsequent
optimizations of the software detector model. On the
other hand, then also the database geometry will be fixed,
because of this dependency. It is clear that a solution
should satisfy the needs of both sides as well as possible.

A similar remark holds for the conditions data. The
globally supported matching [11] between event data and
conditions data on the basis of Interval-of-Validity, TAG
and Version is a high level matching that shield off all
(sub-)detector dependent conditions data structures. These
structures have to be known and agreed upon by both the
database and the reconstruction software. In the latter
case, this will mean that the conditions data structures
will be hard coded into the software (and thus will be
highly resistant to change). This imposes a big
dependency on the databases containing the source for
these data. Fortunately, in the case of relational database
implementations, one can use the view mechanism to
shield off some of these dependencies.

What is lacking at the moment is the implementation of
a uniform naming scheme for the physical detector parts .
It is not possible at this point to track a detector part from
inception to decommissioning. A uniform naming scheme
for part-IDs would include one data type for all databases
concerned. At present only a prescription exists for a
global format for the identification string (19 characters
format) [12], but this is not adhered to by all production
groups. The ID-string would allow the encoding of the
major sub-component that the part belongs to, and its
unique ID inside this component. Also versioning
information of the part should be included. A good place
to introduce this naming scheme would be at the point
where the construction database information is copied
into the other databases. A reference copy of this can be
kept in the geometry database. A complicating factor here
is that for some sensitive components an ID has already
been hard-coded into the hardware. The incorporation of
these kinds of IDs has to be studied.

CONCLUSION
The detector metaphor can support detector monitoring

and error tracking. It has served as the leading concept for
a database that makes it possible to access regions or
components in the detector on the basis of positional

information. This is useful for adjacency queries (such as:
give me all temperatures for a given period in the
neighborhood of this specific component) needed in the
process of tracking down sources of errors.

It can also serve as a skeleton, as a structure to connect
the various data elements such as slow control, conditions
and configuration data and make them efficiently and
uniformly accessible. This characteristic will make it a
suitable tool for the integration of the various databases.

A lot of work still has to be done to come to an
acceptable integration of the database and the software
worlds.

ACKNOWLEDGEMENTS
It is a pleasure to thank Ian Willers, Igor Vorobiev,

Martti Pimia, Frank van Lingen, Michael Case, Boby
Gomez-Reino, Pedro Arce, Asif Jahn Muhammad, and
Stefan Wynhoff for many interesting discussions.

REFERENCES
[1] F. Glege, “Databases in CMS”, Presentation Database

Meeting, June 25, 2003.
[2] F.Glege, “Integration database requirements

evaluation”, Presentation TCM 63, April 28, 2003.
[3] A.T.M. Aerts, F. Glege, M. Liendl, I. Vorobiev, I.M.

Willers, S. Wynhoff “A database perspective on CMS
data requirements”, CMS Note 2004/xxx

[4] J.-M. Le Goff et al., “C.R.I.S.T.A.L. Concurrent
Repository and Information System for Tracking
Assembly and production Lifecycles”, CMS Note
1996/003

[5] M. Case, M. Liendl, F. van Lingen, “Detector
Description Domain Architecture and Data Model”,
CMS Note 2001/057

[6] A.T.M. Aerts et al., “CMS Detector Description: New
Developments”, CHEP04, these proceedings.

[7] Gamma Erich, Richard Helm, Ralph Johnson, and
John Vlissides. "Design Patterns:Elements of
Reusable Object-Oriented Software". Addison-
Wesley, Reading, MA, 1995

[8] Unified Modeling Language, http://www.uml.org
[9] Available from the authors on request.
[10] Asif Jan Muhammad et al., "Migration of the XML

Detector Description Data and Schema to a
Relational Database", CMS Note 2003/031.

[11] The ConditionsDB project home page:
http://lcgapp.cern.ch/project/CondDB

[12] A.H. Ba ll, “CMS numbering and naming scheme”,
http://cmsdoc.cern.ch/~cmstc/naming_and_labelling/

