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Abstract 

Building a state of the art high energy physics detector 
like CMS (Compact Muon Solenoid) requires strict 
interoperability and coherency in the design and 
construction of all sub-systems comprising the detector. 
This issue is especially critical for the many database 
components that are planned for storage of the various 
categories of data related to the construction, operation, 
and maintenance of the detector like slow control data, 
conditions data, calibration data, and event meta data. The 
data structures needed to operate the detector as a whole 
need to be present in the database before the data is 
entered. Changing these structures for a database system 
that already contains a substantial amount of data is a 
very time and labour consuming exercise that needs to be 
avoided. Cases where the detector needs to be treated as a 
whole are detector operation (control, error tracking, 
conditions monitoring) and the interfacing of the 
reconstruction and simulation software.  

In this paper we propose to use the detector geometry 
as the structure connecting the various elements. The 
design and implementation of a relational database that 
captures the CMS detector geometry and the detector 
components is discussed. The detector geometry can serve 
as a core component in several other databases in order to 
make them interoperable. It also provides a common 
viewpoint between the physical detector and its image in 
the reconstruction software. Some of the necessary 
extensions to the detector description are discussed.  

CMS DATABASES 
In a recent overview of the CMS databases  [1] four 

types  of databases were distinguished that describe 
aspects of the detector: 

• Construction databases  
• Equipment Management database 
• Configuration database 
• Conditions database  
This characterization follows the phases in which the 

knowledge about the detector is built up. It does not imply 
that the databases will also be implemented in this way.  

The construction databases hold the information about 
the sub-detector construction, which covers the design 
parameters, the construction process and the concluding 
tests for each detector component.  

The equipment management database (EMDB) [2]  
details the location of each detector component in the 
detector assembly, as well as that of the peripheral 
components in and near the experiment hall, as well as 
their connections. One of its uses is the tracking of all 

detector components from the moment of creation to the 
moment of disposal for the purpose of complying with the 
INB (Installation Nucleaire de Base) regulations. 

The configuration database holds all information 
required to bring the detector in any running mode.  This 
includes the parameters and other settings that are 
downloaded at the time the (sub-) detector is put into an 
operational state. 

The conditions database holds all information needed 
for event reconstruction, except the event data itself. This 
involves data on slowly varying observables, such as the 
temperature and gas pressure in the experiment hall, but 
also on the much more quickly varying statuses of the 
sensitive detector elements. Note that much of the 
configuration data that has been downloaded into the 
detector becomes conditions data, when it is read back to 
provide the initial or start-up state of the detector. 

At present, the construction databases for the sub-
detectors are operational, the EMDB is operational but 
still being extended, and the other databases are mostly 
still in the design phase. A detailed overview of the 
current status of these four types of information and their 
mutual dependencies can be found in [3].  

The event data is filtered by the on-line reconstruction 
software, tagged and then stored for further off-line 
analysis. 

Development Risks 
In the CMS collaboration (and also in the other 

collaborations), the development of the information 
models and the usage of the information often go hand in 
hand. Several implementations are being developed on a 
trial and error basis , guided by local needs. This 
observation can be illustrated by the case of the 
Construction databases. Even though a common solution 
has been proposed that was expressive enough to cover all 
situations [4], local, sub-detector, and even production 
site specific solutions were developed that were made 
optimal for the local situation. The result is a collection of 
heterogeneous databases, implemented in diverse 
technologies , often accessible by proprietary interfaces 
only (see [3]). Although some of the data in these 
databases are only of local interest, another part of them 
describes properties of the detector components  that is of 
interest to the EMDB and should be integrated into it. To 
make these data interoperable with those of the EMDB 
will require as many conversion programs  as there are 
Construction databases . This statement assumes that all 
conversion can be done automatically and does not 
require manual intervention. An alternative is to transfer 
the relevant data into the EMDB and make them available 



from there. This can be done only when the construction 
data has been consolidated and has become read-only, to 
avoid the risk of divergence of the various copies of the 
data. Also this option will require the inevitable 
conversion programs. 

When we translate this situation to the context of on-
line reconstruction or on-line error tracking, it  is clear that 
one wants to avoid the situation that there will be as many 
variants of the conditions data as there are sub-detectors, 
or worse. The timing constraints for processing these data 
are much more severe and one will want to avoid the 
performance losses due to unnecessary conversions. 
Neither does one want copies of the same data in various 
locations to avoid inevitable inconsistencies and the load 
of managing (huge quantities of) redundant data. 

The problem of technological heterogeneity has been 
tackled by standardizing on one database technology for 
the on-line databases, Oracle. This leaves the 
heterogeneity at the modeling and the syntactic level to be 
dealt with. 

DETECTOR GEOMETRY DATABASE 
In the previous section it was observed that so far many 

sub-detector databases have been developed on a trial and 
error basis, guided by local needs. On the basis of a 
working version of a model, one can establish on what 
points the model satisfies the often still tacit requirements 
and on what points it does not. This can be a good way to 
elicit hidden requirements and conduct performance 
studies, and it is a common practice in software 
engineering. This has also been the way of working for 
the detector description used in the simulation and 
reconstruction software (see [5] and [6]). However, it is 
not the way to proceed for databases containing 
information that needs to be globally accessible. The data 
structures needed to operate the detector as a whole need 
to be clear before the data is entered into the database. 
Changing these structures for a database system that 
already contains a substantial amount of data is a very 
time and labour consuming exercise that needs to be 
avoided. A better approach is to try to identify the 
concepts that are common and shared among the various 
users of the information and use these as a global access 
point. As has also been noticed by others ([4], [5]), the 
detector geometry appears to be a good option for this 
purpose. 

The detector geometry is implicitly present in all the 
detector related databases  (all physical components have 
spatial dimensions), and explicitly in the analysis and 
reconstruction software, where the detector is regarded as 
an assembly of shapes with particular material properties. 
As such, it can serve as an intuitive shared interface 
between the data and the software world, once it has been 
made explicit in the databases.  

The nominal detector geometry in principle is also a 
rather stable part of the description. It will only change, 
when one of the sub-detectors is moved with respect to 
the others or is replaced by a differently shaped one. This 

is a rather infrequent occurrence: perhaps once every five 
years.  

The detector and its supporting equipment can be 
modeled as a hierarchy based on the container-contained 
relationship between detector parts  (see [5]). Many 
detector parts can be viewed as composed of parts or 
components that may in turn be composite themselves. In 
the geometry description the volume or space that each 
physical detector or peripheral part will occupy is 
modeled, not these parts themselves. Such a volume is 
called a CMS Slot. The containment hierarchy is 
represented in Figure 1 by a Simple Tree pattern ([7], 
consisting of the CMS Slot and its self referencing 
aggregation relationship. (We represent the models by 
means of UML (Unified Modeling Language) class 
diagrams [8], using database stereotypes.).  

The CMS Slot represents a Bill of Materials structure 
for the detector to which spatial information (Nominal 
Location) has been attached for the location of the slots in 
the detector as designed. The latter is given in terms of 
the absolute positions and orientations of all volumes with 
respect to the detector frame of reference. 

For a complete geometrical description, also descriptive 
information such as the shape of the slots is needed. Since 
the detector itself is a fairly symmetrical construct, a Slot 
Type has been introduced to capture descriptive 
information which is common to a number of slots, such 
as a shape, modeled as the Solid, and possibly some other 
properties. This information, together with the Nominal 
Location, can be used to construct a 3D-representation of 
the detector (see [8]). Note that there are some constraints 
to be satisfied by the descriptions. For instance, the solid 
of a container should encompass all solids of its contained 
components. 

The data model can handle all information about the 
detector model that is used in the simulation and 
reconstruction software, but it is not limited to that.  Its 
structure is suited for capturing both finer details (further 
decomposition), and information about peripheral 

Figure 1 Detector Geometry 
 



structures such as the racks with the measuring equipment 
and power supply units that are partly co-located with the 
detector, partly located elsewhere. This is made explicit in  
Figure 1 by the introduction of special Slot Types, such as 
the Detector Slot Type and the Peripheral Slot Type that 
represent volumes that will be occupied by a detector or a 
peripheral part, respectively. These sub-types will have 
distinguishing characteristics of their own.  

The information in the database can be used for a 
number of purposes, such as visualization of the detector 
during construction, integration and operation. The CMS 
Slot is a core construct for a number of applications. First 
of all, it serves to integrate the sub-detectors. In Figure 1 
it also serves as a point of reference to attach location 
information. In the same way, alignment (deviations from 
the nominal location), calibration, and configuration 
information can be attached to it . This is further illustrated 
in Figure 2, where the occupancy of a slot by a detector 
component is modeled. The component may have 
alignment data associated with it  and is sub-typed to 
represent the various sub-detectors with their own 
characteristic properties, and associated configuration and 
conditions data (exemplified by the Pedestals). In Figure 
2 some UML class symbols have been replaced by an 
(non-UML) database symbol to represent the fact that 
data about components and alignment, and so on, has a 
much more comp lex structure than a simple class.   

IMPLEMENTATION ISSUES 
A prototype implementation of the detector geometry 

database in Oracle 9i has been made, which is discussed 
in [9]. The prototype has, including indices, a size of 

about 600MB. The data for the database was taken from 
the DDD (Detector Description Database) [5] used in the 
simulation software. In addition to the slots occupied by 
the physical detector parts, the DDD also adds a number 
of intermediary levels to the detector hierarchy that serve 
to group a number of components. This is both for easy of 
data entry, and for ease of representing the geometry in 
the simulation software. Not all of these intermediate 
levels are needed for the geometry database, which will 
reduce its size. 

The data model prototype was designed from first 
principles, and not generated as was done in [10].  
The reason is that the structure of the DDD is captured in 
XML Schema, which is quite suited to specify document 
structures but lacks expressiveness when it comes to 
specifying useful database structures. 

Depending on the implementation of the various 
detector databases, the geometry database can be a central 
part of one large database which encompasses  the four 
database types mentioned above, it can be a (read-only) 
component in each of a number of separate 
implementations, and it can be implemented as an 
independent database from which the other databases are 
accessible. 

An important implementation point is that a common 
geometry also implies a common identification scheme. 
Since the identification of slots (slot-id) is kept 
independent of that of the components , the slots can be 
taken as an independent point of reference to provide 
geometry based global access. From the slot-id the 
nominal position in the detector should be deducible and 
vice versa. The slot ids should have a two level structure. 
The higher level would point to volumes that are 
interesting to the off-line software. The second level 
would point to positions taken by components (chips, or 
boards) that are relevant for configuration settings but too 
detailed for the simulation and reconstruction software. 

Note that once the ids have been assigned and the 
database has become operational, the ids can only be 
changed at a very high cost, since they will propagate 
across all data. 

Note that in the DDD no explicit id-scheme is 
proposed: volumes are distinguished by their position in 
the detector hierarchy, obtained by following the path 
from the full detector volume (the root of the hierarchy). 
This comes from the fact that the DDD is stored in a 
compact form where information that is common to a 
number of components is stored only once [5]. This 
compact description can be read in quickly and is 
expanded in memory to generate all individual shapes.  
The matching of detector components in the on-line 
databases to the volumes in the software detector model is  
therefore a major concern and has to be solved to support 
the usage of, e.g., conditions data in the simulation and 
reconstruction processes. The match between the slots in 
the database and those in the software based model will 
have to be done at the level of sensitive and support (e.g., 
yokes) parts which correspond to the stable part of the 
software model. However, one cannot use the software 



model to generate ids, because the model as a whole is 
still subject to change, as intermediate grouping levels are 
added or omitted. These changes will affect the ids that 
are generated. One possible strategy to establish 
correspondence is by embedding the database slot ids into 
the software detector description. Since the detector 
model for the simulation and reconstruction software is 
composed by hand, this will be a manual task. Great care 
will have to be taken to leave the thus augmented part of 
the software model invariant under subsequent 
optimizations of the software detector model. On the 
other hand, then also the database geometry will be fixed, 
because of this dependency. It is clear that a solution 
should satisfy the needs of both sides as well as possible.  

A similar remark holds for the conditions data. The 
globally supported matching [11] between event data and 
conditions data on the basis of Interval-of-Validity, TAG 
and Version is a high level matching that shield off all 
(sub-)detector dependent conditions data structures. These 
structures have to be known and agreed upon by both the 
database and the reconstruction software. In the latter 
case, this will mean that the conditions data structures 
will be hard coded into the software (and thus will be 
highly resistant to change). This imposes a big 
dependency on the databases containing the source for 
these data. Fortunately, in the case of relational database 
implementations, one can use the view mechanism to 
shield off some of these dependencies. 

What is lacking at the moment is the implementation of 
a uniform naming scheme for the physical detector parts . 
It is not possible at this point to track a detector part from 
inception to decommissioning. A uniform naming scheme 
for part-IDs would include one data type for all databases 
concerned. At present only a prescription exists for a 
global format for the identification string (19 characters 
format) [12], but this is not adhered to by all production 
groups. The ID-string would allow the encoding of the 
major sub-component that the part belongs to, and its 
unique ID inside this component. Also versioning 
information of the part should be included. A good place 
to introduce this naming scheme would be at the point 
where the construction database information is copied 
into the other databases. A reference copy of this can be 
kept in the geometry database. A complicating factor here 
is that for some sensitive components an ID has already 
been hard-coded into the hardware. The incorporation of 
these kinds of IDs has to be studied. 

CONCLUSION 
The detector metaphor can support  detector monitoring 

and error tracking. It has served as the leading concept for 
a database that makes it possible to access regions or 
components in the detector on the basis of positional 

information. This is useful for adjacency queries (such as: 
give me all temperatures for a given period in the 
neighborhood of this specific component) needed in the 
process of tracking down sources of errors.  

It can also serve as a skeleton, as a structure to connect 
the various data elements such as slow control, conditions 
and configuration data and make them efficiently and 
uniformly accessible. This characteristic will make it a 
suitable tool for the integration of the various databases. 

A lot of work still has to be done to come to an 
acceptable integration of the database and the software 
worlds. 
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