
Rio

G. Barrand, LAL, Orsay, France∗

Abstract

Rio (for ROOT IO) is a clean and light C++ rewriting
of the file IO system of ROOT [1]. We shall present our
strong motivations of doing this tedious work along with
the main choices done in the Rio implementation. We shall
say why Rio is more reliable that ROOT. We shall present
the effort done around Gaudi in 2002 to read LHCb events
with Rio. We shall present our views about the POOL LCG
proposed solution of a storage system based on ROOT. To
finish we shall explain why CERN is going to miss an es-
sential target in software : an appealing open source object
oriented storage system for HEP.

MOTIVATIONS

This work had been motivated by the strong conviction
that an IO package is not a drawing package. We do not
believe that a dedicated IO package on which someone can
find a Draw() method on its introspection system is good
engineering. Helas, the minimum that we can extract from
ROOT to do the IO comes with the TClass having a Draw()
method on it. On none of the object oriented language or
package that the author had in hand (C++, java, Csharp,
NextStep, Qt, Inventor) someone can find such thing. Is the
TClass::Draw() a breakthrough of humankind coming from
HEP ? Or is it an indication showing that the engineering
of ROOT and then of its IO system is globally not a good
one.

POTENTIAL CLIENTS

Rio is intended for people that looks for an open source
dedicated file IO system ROOT compliant, but do not want
to enter in the whole ROOT system. Potential clients are
people that develop their own framework (event model
manager) and seek for a well defined dedicated IO pack-
age which is not another framework.

HISTORY

Previous attempts (Rio-v1r*, Rio-v2*, RioGrande-v3*)
were a repacking of the ”ROOT core” library. But it ap-
peared that the ROOT core is in fact the core of a frame-
work and then more than an IO package. Usage of these
previous Rio versions within the OpenScientist Lab [2]
package showed that it was still necessary to bring around
200 000 lines of code to store and retrieve an histogram in

∗ barrand@lal.in2p3.fr

a file in a non reliable way. This involves the code of the IO
machinery but also the code of the CINT interpreter used
mainly at this point to have an automatic generation of the
streamers of a couple of classes. It involves also to bring
on board some codes to handle networking, drawing, GUI,
etc... that are in fact irrelevant to the problem of storing
data in a file. Some non-discussions with the ROOT con-
ceptors clearly showed that these people will not do any
attempt in order to have a more modular repacking of the
ROOT core. The idea of doing Rio was born in November
1998 after the CHEP’98 conference of Chicago.

DICTIONARY

The author was interested in studying the question of the
relationship of the CINT interpreter with the IO machin-
ery. Is CINT really needed ? Isn’t it possible to have the IO
machinery repacked in order to be able to use an abstract
dictionary so that someone can provide the dictionary info
by hand, or in an automatic way with other interpreters or
languages that have introspection ? The mastering of the
dictionary production would permit in particular to be able
to reuse the dictionary machinery of some languages like
Python and java to store objects of these languages with a
minimum of code between these languages and the IO ma-
chinery. Be able to write a dictionary by hand can permit
some software not interpretable by CINT (Geant4, heav-
ily templated code, etc...) to have access to a storage sys-
tem. Some framework, like Gaudi, uses the SEAL LCG-
Dict dedicated reflexion package. It could be fine to be
able to use these dictionaries in direct connection to the IO
package

PURE ABSTRACT INTERFACES

The author was interested also to study the usage of pure
abstract interfaces ; a technique that permits to decouple
domains in a nice way at the level of the code. The critical
points to study were the coupling of the dictionaries to the
IO system and of the data streamers to the IO system. We
remember that a pure abstract interface permits to estab-
lish a relationship at compilation time but not at link time.
Imagine ; having NOT to link your DLLs with ROOT lib-
Core, libCINT, libTree, etc...! Due to the strong resistance
of the ROOT team to not use this nice technique, the au-
thor wanted to know if this resistance was justified techni-
cally. The answer is no. With Rio-v3r0 the goal had been
achieved ; the IO machinery sees only some pure abstract
classes like Rio::IDictionary, IClass, IObject and the data



streamer sees the Rio::IBuffer. What is astounding (com-
pared to ROOT) is that these classes have really few meth-
ods. In particular the Rio::IObject and Rio::IClass have NO
draw method. Note that speed, being highly dominated by
the system read/write, the overhead of using pure abstract
interfaces is neglectible in this problem.

STL

It was clear also that some code in the ROOT core was
here due to a wish of not using existing libraries like STL
and to a tendency of the authors to rewrite, reinvente or
T-repack most of things. Was it not possible to have some-
thing lighter by simply using STL ? The answer is obvi-
ously yes.

CLASSES

Rio is light because it does in 15 klines of code what
ROOT does with 200 klines. It is clean because, among
other things, it has 85 classes and 9 interfaces organized in
a clean inheritance tree dealing only with the problem of
IO. This has to be compared to the needed 228 classes of
ROOT having for the moment zero interfaces.

FILE ORGANIZATION

The logic of the IO itself had been respected as much
as possible (at least up to the understanding that the author
has of the IO logic of ROOT). In particular the streamers
of the basic classes like TFile, TKey, TDirectory, TTree
had been respected so that a file produced by Rio may be
understood by ROOT itself. For example a file containing
a TTree filled with basic data types like ints and floats is
readable by ROOT.

FORWARD COMPATIBILTY WITH ROOT

What happens with files produced with the brand new
last release of ROOT ? Is Rio able to read them ? This is
not guarantee for the moment. One painfull point is that ba-
sic data organizer streamers (TDirectory, TTree, TBranch)
are oftenly touched in ROOT and some time for reasons not
related to storage. For example, the TBranch had received
recently the inheritance of TAttFile which is irrelevant to
the problem of the IO (the ROOT team thinks probably
that the IO of a TBranch is more efficient if drawn with
hatches). The TBranch streamer being changed then we
can consider that the file format had changed. Someone
can reply by saying that the streamer infos of a TBranch is
stored in the file and, by exploiting that, someone would be
forward compatible with new ROOT version. Right, and
we are going to do that in Rio, but anyway it would be wel-
come to have some guarantees that ROOT file format be
not drastically changed at each release for fancy reasons.
Who can enforce that ?

CODING DRIVING RULES

In Rio there is no ”g” logic that is to say no global point-
ers and singletons. In ROOT, the fact that classes may
see other classes through global pointers clearly breaks the
encapsulation. Any classes in ROOT can establish rela-
tionships to any other classes in a non traceable way. We
even don’t speak of relationship established by using the
CINT interpreter (string relationship). In Rio, the relation-
ships are established only by using inheritance, encapsula-
tion and methods arguments (as explained in all good book
about OO).

Having no singleton, someone can instantiate two
Rio::Files by having the guarantee that there is no hidden
relationships between them. It means that someone can
have true multithreading on multiple files in good confi-
dence.

We do not provide, in Rio itself, an automatic streamer
production by using some interpreter. This should come as
third party packages. That’s right that for the moment we
have no one for Rio.

We do not have in Rio networking, visualization, GUI,
etc... All these are other problems. One consequence is
that the relationship to the operating system specific things
is minimal. It is concentrated in the Core/File.cxx file and
concerns mainly the C functions : open, close, read, write,
lseek. The configuration and installation is then straight-
forward.

We use STL, then we do not reinvent string, list, vector,
etc...

We avoid pointers as much as possible and then use
(const) references. We use the ”Rio” namespace, then we
have Rio::Xxx instead of TXxx. We namespace the li-
braries, that is to say we have libRioCore, libRioTree in-
stead of libCore, libTree, etc... that may clash with other
products. We have IXxx to name an interface (IClass, IOb-
ject). We use basic data types (int, short, double, float) ; we
do not reinvent all the basic data types.

And once more we have no Rio::IClass::draw() or
Rio::IObject::draw() methods. An IO package is NOT a
drawing package.

We avoid also static objects and then static object con-
structors. This permits to build safe DLLs on all platforms.
We try to be ANSI C++. The code had been tested with five
ANSI C++ compilers (g++, VisualC++, DEC/cxx, Sun/CC,
KCC). We avoid technicalities and eXtreme C++. Experi-
ence shows that it is not intelligible for others and most of
the time breaks the portability.

If you find that all the upper points are common sense,
then contact someone of the ROOT team and try to discuss
these points with him.

RELIABILITY

In ROOT, the IO buffer accesses are not protected on
overflow, especially around strings (see in Bytes.h the to-
buf methods). Streamers do not have a return status in case



of problem. On a corrupted file, the crash (or exception car-
pet hiding) is unavoidable. Some simple protections would
permit to treat the problem in a clean way (stop the stream-
ing, give up this file, warn the user, etc...). In Rio this had
been done and experience shows that Rio is much more
difficult to crash than ROOT.

RESULTS

The results had been VERY encouraging. Now the
OpenScientist Lab package is able to store/retrieve his-
tograms and tuples with around 11 000 lines of code only.
Files containing TTree with simple data types (int, float)
are not only readable by ROOT itself but also with the java
implementation of the ROOT IO reader done by T.Johnson
at SLAC [3].

In September 2002, we have been able to read LHCb
data produced at the ROOT format during summer 2002.
These data had been produced within the Gaudi frame-
work, by using the GaudiRootDb service and with ROOT-
3-01-06 behind. The data have been read by using a modi-
fied version of GaudiRootDb (GaudiRioDb) in order to use
Rio-v3r0. In LHCb, it appears that this way is now no
more practicable since this experiment had decided to use
LCG/POOL (see below). Anyway, someone else using the
Gaudi framework has now a very light IO package at hand
to handle file storage.

AT CERN

The existence of Rio (and the fact that it was able to read
LHCb data in 9 / 2002) had been notified to main actors of
storage at CERN and LHCb in 9 / 2002. At that time the
reached solution to read LHCb data was simple and clean.
It summed up to one Gaudi service (GaudiRioDb package)
over Rio. Put all together it amounts up to around 20 klines
of code only. The reactions had been unanimous and non
scientific : we do not want to ear about it !

Now CERN (and LHCb) goes in the direction of some
kind of fermionic mixture with ROOT to do the IO and
some upper layer (POOL over SEAL) to handle collections
of files. All this dealing with two dictionaries that will ob-
viously never been merged, three incompatible plugin sys-
tems (Gaudi, SEAL and ROOT ones), three build systems,
etc...

Right now the amount of code to read an LHCb event
is probably around one million of home made code, cover-
ing CINT, ROOT, SEAL, POOL, Gaudi and not counting
”external” packages like : boost, gccxml, pcre, uuid, zlib,
mysql++, rx. A pain.

The author invites the reader to have a look at the code
(or, let us be kind, only the class diagrams) and try to un-
derstand how a piece of data is stored in a file with all that.
The author had to do the port on MacOSX of all the uppers
in order to run the LHCb Panoramix visualization system ;
it had been months of intrinsic intellectual pain. Will it be
needed to wait 2030 that blocking people be retired in or-

der to have another chance to put things on track and have
something appealing concerning HEP storage software ?
Are we going to be saved, before that, by a third party ded-
icated open source product ?

For the 50th birthday of CERN, the author wishes to the
lab that had been created to federate engineering forces to
do high energy physics, and claims to have the ”E” of Eu-
ropean in its name, a very good luck with the storage of
data of the LHC experiments

FUTURE

Rio is used in the OpenScientist Lab package and Open-
PAW program. The developments will follow the needs
that will come around these softwares. Are already re-
quested the chaining of tuples and the storing of more
AIDA data types. It is clear that Rio covers IO in one file
only. The logic would be to continue by handling opera-
tions on collection of files and then be lead to a data base
software. For the moment, only the name of this package
had been found : RioGrande ! Any volunteer to help doing
it with the same coding spirit that the Rio package ?

DOWNLOAD

Rio comes with the OpenScientist distribution. It can be
reconstructed with CMT or configure on UNIXes and with
CMT or .NET on Windows.

CREDITS

Despite the differences of opinion on everything, the au-
thor thanks anyway Rene Brun and Fons Rademakers that
designed, around 1994, the ROOT IO format which appears
to be anyway efficient (on speed and size of files) to store
HEP data.

CONCLUSIONS

Rio is used in OpenScientist (and OpenPAW) to store
data. We definitely would like that this work be an impulse
to make aware physicists and computer scientists that a re-
thinking of ROOT is possible on a much more clean and
simple basement that what exists today.

REFERENCES

[1] http://root.cern.ch

[2] http://www.lal.in2p3.fr/OpenScientist.

[3] http://www.freehep.org


