
Mantis: the Geant4-based simulation specialization of the CMS COBRA
framework

M. Stavrianakou, FNAL, Chicago, USA, P. Arce, CIEMAT, Madrid, Spain,
S. Banerjee, Tata Institute, Bombay, India, T. Boccali, SNS, Pisa, Italy,
A. De Roeck, V. Innocente, M. Liendl, CERN, Geneva, Switzerland,

T. Todorov, IReS, Strasbourg, France

Abstract

Mantis is a framework and toolkit for Geant4-based sim-
ulation using the CMS OO architecture implemented in the
COBRA project. Mantis provides the infrastructure for the
selection, implementation, configuration and tuning of all
essential simulation elements: detector geometry, sensitive
detectors, generators and physics, magnetic field, run and
event management, and user monitoring actions. Persis-
tency and other important services are available using the
standard COBRA infrastructure and are transparent to user
applications.

INTRODUCTION

Mantis is a framework and toolkit for Geant4-based [1]
simulation. As such, it is a specialization of the COBRA
framework [2], which implements the CMS OO architec-
ture. In CMS, Mantis is the basis for the OSCAR [3] sim-
ulation program.

ARCHITECTURE, REQUIREMENTS AND
DESIGN

Mantis has been developed in the context of COBRA.
COBRA is a mature product based on state-of-the-art de-
sign patterns and implementations. It has been proven flex-
ible and extensible, reliable, robust, performant and main-
tainable.

Mantis is architecture-driven and has from its concep-
tion aimed to exploit fully the COBRA infrastructure and
functionality. Several COBRA choices (lazy instantiation,
action on demand etc) and patterns (factories, observers-
dispatchers etc) are indeed applicable to the simulation do-
main and have been used extensively. Given the vast scope
of LHC simulation, extensibility and configurability are
fundamental prerequisites: abstract interfaces allow imple-
mentation of new modules for all major simulation compo-
nents. Although most essential functional requirements are
taken into account from the start, further requirements are
implementable with minimal effort.

To minimize overheads from development and support
of non simulation-specific elements and to facilitate main-
tenance and quality assurance, Mantis has also aimed at
maximal synergy with other CMS software products and

tools. For visualization and event display Mantis relies on
IGUANACMS [4]. Configuration management and the re-
lease process are managed with SCRAM [5]. Important
quality assurance functions such as dependency analysis,
profiling and testing are handled by CMS IgNominy, Ig-
Prof and OVAL [5] respectively.

Important constraints arise from demands on ease of use.
This implies minimal need for coding, compilation and
linking on the user side, as well as run-time flexibility and
configurability.

Requirements and constraints also arise from the need
for simulation productions. Metadata initialization and the
capability to suspend and resume interrupted runs (the lat-
ter being especially important for Condor farms), are exam-
ples of such requirements. In general, Mantis is compatible
with the available infrastructure and has required minimal
additional deployment effort by the CMS Monte Carlo pro-
duction team.

Figure 1: Mantis domain decomposition and dependencies



A schematic Mantis domain decomposition and the re-
sulting dependencies is shown in Fig. 1. This reflects the
current implementation (which amounts to less than 10
KLOC) that is already the result of several iterations of do-
main breakdown and re-engineering. The very loose cou-
pling (see metrics in Table 1), explained in great detail in
[6]) allows further re-engineering and repackaging, if de-
sirable, in a manner transparent to the client applications.

Table 1: Mantis metrics calculated by IgNominy

Packages 10
Levels 5
Cumulative Component Dependency (CCD) 30.0
Average Component Dependency (ACD) 3.0
Normalized CCD (NCCD) 1.1

CORE APPLICATION, RUN AND EVENT
MANAGEMENT

Mantis is a COBRA simulation application and relies on
it for the program’s main. In this manner, it is COBRA that
takes over and handles the application. The core consists
of a SimApplication and a SimEvent.

SimApplication creates the SimReader, an instance of a
SimEvent source factory. The SimEvent source factory is a
COBRA abstract factory (a statically built singleton) that
can read simulated events from the original source.

The SimReader instantiates the Mantis RunManager and
launches the actual Mantis/Geant4 application.

The RunManager instantiates a G4RunManagerKernel
and controls standard components such as the selection and
instantiation of generator, magnetic field and physics lists,
as well as the interfaces to the run, event, stacking, track-
ing and stepping actions. The RunManager also handles
the storage and retrieval of run and event random number
seeds. This feature facilitates debugging of rare crashes in
time-consuming physics events. The storage and retrieval
of the cross-section tables built for a given detector con-
figuration and physics list is also thus centrally handled.
This feature allows the reading of pre-built cross-section
tables which reduces the overall initialization time by ap-
proximately a factor 4. At the end of the program, control
is returned to COBRA.

Although a Mantis application can be run interactively
in a Geant4 shell, with or without a Geant4 macro com-
mand file, the recommended mechanism is via the man-
tisRC datacard file. This is the standard COBRA configu-
ration mechanism and ensures maximum flexibility as well
as overall consistency.

The event object is an instance of a COBRA SimEvent.
A SimEvent manages the Monte Carlo truth, the format of
which is common for and sharable by all CMS applications
(reconstruction, visualization etc). It combines an interface

to the generic transient event TSimEvent with an interface
to the basic Geant4 event.

The Monte-Carlo truth is assembled by the Mantis Even-
tAction. It contains the main event, its assigned weight and
its type as specified by a set of parameters, the event ID
(run number, event number), the four-vector of the colli-
sion vertex and all particles with their tracks and vertices
and decay trees from the original generator event. Tracks
produced during the Geant4 simulation are also stored if
they have been flagged for saving at various points (track-
ing, stepping, hit processing etc) of the actual CMS simula-
tion. Geant4 tracks are saved either because they have pro-
duced hits in the sensitive detectors or because they have
been identified as important for the interaction history and
the eventual reconstruction of the full tree.

The Monte-Carlo truth is organized so as to allow nav-
igation from hits to their corresponding tracks and parent
vertices.

A COBRA SimDBPopulatorFactory factory interfaces
to the persistent store.

INFRASTRUCTURE AND SERVICES

Geometry

Detector description in CMS is handled by the Detec-
tor Description Database, DDD [5], a COBRA subsys-
tem. The XML files with the actual detector configura-
tions are under version control, managed by the Geometry
project[5].

Mantis provides mechanisms to convert DDD solids and
materials to their Geant4 counterparts as well as the logical
and physical volumes needed to build the Geant4 geometry
for the chosen description.

The DDD SpecPars mechanism allows the definition of
special parameter sets (extra attributes, field parameters,
range cuts etc) to be associated with selected detectors.

Magnetic Field

The magnetic field inherits from G4MagneticField and
implements the Geant4 GetFieldValue method, so that any
standard CMS magnetic field can be loaded by the COBRA
CMSMagneticFieldLoader and passed to Geant4. It is a
world volume observer, i.e. it can only instantiate a field
when it is notified that the detector setup has been built.
The DDD SpecPars mechanism allows choice and con-
figuration of G4MagIntegratorStepper (G4ClassicalRK4,
G4SimpleHeum, G4HelixExplicitEuler etc), chord-finder
and propagator. The infrastructure also allows modeling,
instantiation and configuration of local field managers for
chosen detectors and particles.

Local field managers, an important Geant4 feature, han-
dle particles that are either of little interest or unlikely to
escape a given detector or set of volumes and can there-
fore be propagated with relaxed criteria as to the accuracy
of the stepping and chord finding. This treatment allows a
moderate performance improvement (propagation in field



accounts for about 10% of the processing time) depending
on the type of study and particles involved . The obvious
use case currently under study involves all particles other
than muons or charged pions of Ekinetic > Ethreshold, in
all calorimeter volumes.

Sensitive Detectors

Sensitive detectors inherit from G4VSensitiveDetector
and their concrete implementations in the actual CMS
application implement the Geant4 ProcessHits method.
The sensitive detectors are registered to the Geant4 sen-
sitive detector manager but they are instantiated and ”at-
tached” to their corresponding geometrical volumes at run
time according to the set-up described in the configuration
DDD/XML file. The facility is a world volume observer,
i.e. it must be notified that the geometrical detector has
been constructed before it can be instrumented.

This mechanism also offers the possibility of instrument-
ing (making sensitive) any volume, for prototyping pur-
poses or in order to facilitate studies of energy losses in
dead materials or specific parts of the detector.

While all real CMS sensitive detectors are implemented
in OSCAR, a general-purpose sensitive detector, given as a
Mantis example, can be used for stand-alone Mantis test-
ing.

Hits and hit collections

Hit processing and collection is handled outside the
framework by the detectors themselves, based on COBRA
classes common for and sharable by all CMS applications.
These common classes are managed by the COBRA Pro-
found package.

COBRA read-out factories handle the hit formatting as
will be required for the digitization. The latter which
is handled separately from the simulation, by the CMS
ORCA [5] reconstruction program.

Generators

Event generators are constructed from an abstract factory
based on the COBRA GeneratorInterface packages and ser-
vices. The RunManager instantiates the chosen generator
(also referred to as reader), if any. The generator trigger
method returns a RawHepEvent or a HepMC::GenEvent,
which is passed to the RunManager GenerateEvent to be
converted to a G4Event. The conversion method (RawHep-
Event2G4 or HepMC2G4) creates a G4PrimaryVertex with
the generated vertex coordinates and assigns to it the pri-
mary particles that survive acceptance cuts. This primary
event vertex, the proper decay times of the unstable parti-
cles and their predefined decay products are passed to the
G4Event. Thus it is Geant4 that creates the secondary ver-
tices after correctly propagating and simulating the unsta-
ble particles until they decay as predefined.

All generators can be run-time configured in terms of

• the first event to be read (automatically determined in
the case of interrupted run resumption)

• the maximum number of events they can return de-
pending on the total available (or a sensible number
in the case of on-the-fly generation) and the first event
esp. if non-zero or if the run is being resumed

• the event vertex generator to be used (none, flat, Gaus-
sian, test-beam specific)

• the run and event numbering scheme to apply

Available generators (some provided for backwards com-
patibility to allow reading of already available samples):

• EventGunReader: a particle gun with run-time choice
and configuration of particle type, and ranges, energy
and pT ranges with a given distribution (flat, Gaussian
etc)

• EventNtplReader and EventTxtReader: read CMS
generated physics events from HBOOK ntuple or
ASCII file

• EventPythiaReader: read a Pythia6 event generated
on the fly, using the COBRA Pythia6Interface

• EventStdHepReader: read an event in StdHep format
from an ASCII file

• EventHepMCReader: read a HepMC::GenEvent from
any type of input file (ASCII, POOL database, on-the-
fly etc)

Physics

An abstract physics list factory allows run-time selection
and configuration of specific physics lists. Physics cuts
(i.e. range cuts) are implemented as cuts per region (set
of volumes). The regions and volumes they contain (typ-
ical scheme distinguishes between “sensitive” and “dead”
regions) and the cut values for electrons, positrons and pho-
tons are read from a DDD/XML file at run-time.

The CMS physics lists reside in and are managed by OS-
CAR. A DummyPhysics list in Mantis, with propagation,
decay and optionally DummyEMPhysics (only ionization
process for electrons and muons) is provided for Mantis
stand-alone testing.

User Actions

The Geant4 UserAction mechanisms are employed to
dispatch (using the COBRA Dispatcher-Observer pattern)
quantities such as the beginning and end of run, event, track
and step.

User monitoring is implemented in the form of Ob-
servers of one or more of these quantities with access to
the dispatched pointer via the COBRA Observer::upDate
method



Miscellaneous services

Persistency is handled by COBRA with Mantis housing
minimal and stable interfaces to it. This scheme has al-
lowed transparent transition from Objectivity/DB to ROOT
and eventually to POOL, without any change in Mantis or
user code.

Similarly, reliance on COBRA for histogramming and
statistical analysis services has facilitated the transition
from HBOOK and LHC++/Anaphe, to AIDA and ROOT.

As mentioned previously, monitoring, including produc-
tion monitoring features and GRID interfaces, and software
configuration management and quality assurance, are all
handled by external to Mantis tools.

New functionality

Mantis is supposed to provide a framework for partial
event simulation for CPU-intensive very large scale pro-
ductions of physics channels with appropriate commonali-
ties, such as the H → ZZ → 4 leptons, for which 50 M
event samples must be simulated. The ability to simulate
the event without the leptons and then superimpose the lep-
tons, which are simulated separately but with the correct
kinematics, will significantly reduce production timescales
and costs.

Although Mantis is by design Geant4-based, an inter-
face to FLUKA physics using the same Geant4 geometry
via the FLUGG package, can be accommodated. Access
to FLUKA physics may be required for specific detector
studies of radiation effects on sensitive systems.

Should it emerge as a CMS requirement, Mantis can
be extended to provide interfaces for all CMS simula-
tion applications, allowing combinations of and transitions
between fast simulation with FAMOS [5] and full sim-
ulation with OSCAR [3] with or without parameterized
shower simulation with G4FLASH [7] and with or with-
out FLUKA interfaces.

MANTIS APPLICATIONS: OSCAR

Mantis is the framework underlying the CMS Geant4
simulation program OSCAR [3], [7].

All CMS detectors - Tracker, Calorimeters and Muons,
the forward systems - CASTOR calorimeter, Totem tele-
scopes and recently the Zero Degree Calorimeter (ZDC),
and several test beam layouts and prototypes, are built us-
ing the Mantis/DDD/Geometry infrastructure. Their sen-
sitive detector behaviour, track selection mechanisms, hit
collections and numbering schemes are implemented in
OSCAR.

OSCAR also provides several physics lists: the standard
Geant4 with choice of hadronic list (LHEP, QGSP, QGSC
and FTFP), a fully customizable list and recently a list for
parametrized electromagnetic shower simulation.

The standard OSCAR application (Tracker, Calorimeters
and Muons and the QGSP physics list) has been extensively
tested following the evolution of Geant4 and Mantis. It has

proven robust: 1/10000 crashes in pp events in the DC04
production to no crashes in the latest stress tests with 800
K single particles and 300 K full QCD events. It has pro-
duced over 35 million physics events for the CMS DC04
data challenge and is in use for the CMS physics TDR sim-
ulations. A SUSY event with leptons and missing trans-
verse energy, as simulated with OSCAR and displayed by
IGUANACMS, is shown in Fig. 2.

As of September 2004, the performance in terms of
CPU and memory compares favourably to that of the
Geant3-based simulation, with further improvements in the
pipeline.

Figure 2: SUSY event simulated with OSCAR and dis-
played by IGUANACMS

REFERENCES

[1] S. Agostinelli et al., “Geant4: a simulation toolkit”, NIM A
506 (2003), 250-303
Geant4, http://wwwinfo.cern.ch/asd/geant4/geant4.html

[2] V. Innocente, et al., “CMS Software Architecture: Software
framework, services and persistency in high level trigger, re-
construction and analysis”, Computer Physics Communica-
tions 140 (2001) 31-44

[3] OSCAR, Object oriented Simulation for Cms Analysis and
Reconstruction, http://cmsdoc.cern.ch/oscar/

[4] V. Innocente, G. Eulisse, S. Muzaffar, I. Osborne, L. Taylor,
L.A. Tuura, “Composite Framework for CMS Applications”,
CHEP’04, Interlaken, Switzerland, September 2004

[5] CMS Object-Oriented projects,
http://cmsdoc.cern.ch/cmsoo/cmsoo.html

[6] Large Scale C++ Software Design, John Lakos, Addison-
Wesley, 1996

[7] “An Object-Oriented Simulation Program for CMS”, S. Ab-
doullin et al., , CHEP’04, Interlaken, Switzerland, September
2004


