
CERN MODULAR PHYSICS SCREENSAVER
OR

USING SPARE CPU CYCLES OF CERN’S DESKTOP PCS.

Eric McIntosh, Andreas Wagner, CERN, Geneva, Switzerland

Abstract
CERN has about 5500 Desktop PCs. These computers

offer a large pool of resources that can be used for physics
calculations outside office hours.

The paper describes a project to make use of the spare
CPU cycles of these PCs for LHC tracking studies. The
client server application CPSS (compact physics
screensaver) is implemented as a lightweight, modular
screensaver and a Web Application containing the physics
job repository. The information exchange between client
and server is done using the HTTP protocol. The design
and implementation is presented together with results of
performance and scalability studies. A typical LHC
tracking study involves some 1500 jobs, each over
100,000 turns requiring about 1 hour of CPU on a modern
PC. A reliable and easy-to-use Linux interface to the
CPSS Web application described in this paper has been
provided. It has been used for a production run of 15,000
jobs, using some 50 desktop Windows PCs, which
uncovered a numerical incompatibility between Windows
2000 and XP. It is expected to make available up to two
orders of magnitude more computing power for these
studies at zero cost.

INTRODUCTION & OBJECTIVES

Available Unused Computing Resources
The desktop computer park at CERN consists of about

5500 desktop PCs running the Windows operating
system. The estimated usage of their CPU resources
during the normal lifecycle is shown in Table 1. The CPU
speed breakdown of CERN’s desktop computers is shown
in Figure 1. It can be easily seen that there is a significant
potential of unused computing resources available.

Table 1: CPU Resource Usage

Lifecycle of standard CERN Desktop PC
Lifetime About 3 years 25400 hours

Office Usage 40 hour/ week * 50
weeks/year * 3 years

6000 hours

Idle Time non office hours ~20000 hours *)

*) NB 1: Assuming PC powered on 24/7
 NB 2: Idle time during normal office usage not counted!

The idea of using idle CPU cycles was previously very

successfully applied in the context of astronomical
research with Seti@Home [1] and BOINC [2]. CERN is
also evaluating LHC@home [3] based on BOINC.

Figure 1: CPU speed distribution of CERN’s desktop PCs.

Workload for LHC design studies
In the LHC design and commissioning phase many

tracking studies are needed to verify the long-term
stability of the beam. This application was typically run
on large CERN Linux batch clusters and it has now been
ported to Windows. The scale and extent of such studies
has always been limited by the available computer
capacity. The modest input/output requirements, as shown
in Table 2, demonstrate the suitability of the application
for a distributed computing system.

Table 2: SixTrack – computing resource usage

SixTrack—Required PC Resources
Total Memory Requirement 65 MB

Working Set 32 MB

Input Files 250-500 KB

Output Files 20 MB +15 MB per particle pair
(about 3MB compressed)

A complete study produces ~500 MB for 100 000 turn jobs

CPU time - PIII 1600 MHz 1 hour

ACCELERATOR DESIGN STUDIES

Accelerator design studies, typically using the MAD8

[4] or SixTrack [5] Fortran 77 programs have been an
important part of the CERN computing workload for
many years. These computations are floating-point
intensive but have rather modest input/output
requirements compared to the event simulation/processing
applications of the experiments.

The studies have been performed on the classical
computer services; first mainframes (vectorised /
pipelined), then workstations, and now on LINUX PC
clusters. They are excellent candidates for the workload
of a distributed system.

The SixTrack program, optimized for LHC studies,
tracks many pairs of nearby particles, with different initial
angles and amplitudes, for up to a million turns round
multiple models of the accelerator.

Provided the tracking is performed in a symplectic
manner, the determination of the onset of chaotic motion
defines the Dynamic Aperture. A Linux
run_environment, to facilitate the generation, submission,
execution, and analysis of the thousands of jobs used, is
also available.

The principal objectives were to verify the SixTrack
results on Windows PCs, extend the run_environment to
facilitate processing with CPSS, on the GRID, and on
BOINC.

SIXTRACK ON WINDOWS
The SixTrack program is portable; it is part of the

SPEC FP 2000 Benchmark Suite [6], but while individual
runs may be comparable across Compiler, Operating
System and Hardware platforms, a complete study must
be performed on identical hardware and software. Small
initial numerical differences grow exponentially over time
leading to different values of the dynamic aperture which
makes comparative magnet evaluation studies much more
difficult. First tests on Windows using the CERN installed
Compaq Visual FORTRAN Version 6, now obsolete,
showed a thousand fold reduction in performance when
dealing with infinite and undefined values. This issue was
resolved by more frequent checking for chaotic particles.
Further testing then uncovered a difference between
results from Windows 2000 and Windows XP systems.
This was traced to the input values, of approximately
1000 out of 60 million magnet errors, being one least
significant bit bigger on the W2000 system. This was
never satisfactorily explained but "the problem does not
exist with up-to-date compilers". The Lahey [7] lf95
compiler was adopted instead. Not only did this compiler
solve the input problem, but, provided compatible
versions for Linux and Windows were used, gave
identical results across these platforms.

Finally, a checkpoint/restart capability was introduced
to SixTrack, a classical time space trade-off producing a
state file of 10KB as against a full dump of over 30MB.
Occasional, even frequent interruptions of the desktop PC

screensaver can now be tolerated and allow extended runs
of one million turns or more.

CPSS ARCHITECTURE
To make use of the unused CPU cycles of desktop PCs

and to reuse the existing Web infrastructure of CERN a
simple lightweight modular screensaver was developed.
The client server application communicates via HTTP
with a Web Application containing the job repository. The
same protocol is used for job submission and download of
results (Fig 2).

Figure 2: Compact Physics Screensaver Architecture

In a typical work cycle of the CPSS client screensaver
it first contacts the server to check for updates and then
requests task units that it downloads and executes. Once
the execution of the task is finished the result files will be
uploaded back to the server. The description of each task
contains client requirements such as OS version, CPU
speed minimum, available disk space and priority.
Furthermore it contains a task description in terms of
input/output files, the pre-, main- and post-commands,
checkpoint/restart capability and result files.

Figure 3: Status display of the CPSS screensaver

One of the design considerations was to implement the
CPSS client in a non-intrusive way. If the user returns to
his workplace while a task is being processed, the
screensaver will shut down instantly and hand back
control to the user. The next time the CPSS client starts up

it will reconfirm the task assignment and if not instructed
by the server to drop the task, it will resume its execution
(if checkpoint/restart is enabled) or simply restart the task
from the beginning.

THE SIXTRACK RUN_ENVIRONMENT
The original SixTrack run_environment provided shell

scripts to prepare the mask input files from the LHC
database, prepare the final input files and job scripts,
submit the jobs, and process the results. It was necessary
to modify each and every script for different runs or case
studies.

The variables of interest were gathered into an
environmental definition file, job submission was
extended to CPSS, and new scripts were provided to
download results, check the run status, and re-submit lost
or erroneous tasks. The jobs running on CPSS (or on
other distributed systems such as the GRID or BOINC)
cannot in general directly return results to the remote file
systems. Instead the results are held in a buffer, verified,
and then distributed. Book keeping is done with a small
text file database and a set of log files.

CPSS DEPLOYMENT & PERFORMANCE
CPSS is presently used for CERN’s Windows based

desktop PCs on a voluntary basis. After several months of
reliable operation on some 50 PCs, an invitation was sent
to users of the CERN IT department encouraging them to
install the CPSS client, followed by an article published
in the CERN internal Weekly Bulletin in the middle of
August. The increase in the number of clients as a result
of these announcements can be clearly seen in the number
of participating machines (see Fig. 4). There are presently
about 500 desktop PCs registered.
The throughput of CPSS increased proportionally. The
number of results returned and the CPU time per day, as
well as the total number of processed tasks and total CPU
contribution, is shown in Figure 5. About 200,000 tasks
for various LHC design studies have been processed
using some 10,000 days of CPU time.

Figure 4: Evolution of the number of registered clients

Figure 5: Number of results processed and CPU
contribution per day and accumulated values.

 RESULTS

First studies involving 1,500 and 15,000 1 hour jobs,

100,000 turns for 30 particle pairs, 5 angles, and 6 initial
amplitudes were completed successfully. The 1,500
results were verified as being identical with those from
Linux. In the 15,000 job case many tasks were duplicated
and the results again verified as being identical. This was
sufficiently encouraging to attempt a much more detailed
investigation of the possible Dynamic Aperture
limitations using 1000 angles implying 200 times more
computing. This study is almost 50% complete using the
existing 500 clients, and should finish before the end of
the year. The results for a particular case of the study are
shown in Figures 6 and 7.

The robustness of the procedures and the recovery from
the inevitable errors, node crashes, data corruption, and
user mistakes, is satisfactory.

Testing of the effect of beam-beam interactions has
uncovered further numerical differences, again at the
level of the least significant bit. Some results of the EXP
and LOG functions have been found to be different
between different brands of PC in spite of using the same
statically-linked executable, i.e. the same libraries and
generated code. The same or similar effect has been
produced using other compilers and libraries. Unless this
problem is resolved it will not be possible to easily use
SixTrack on a heterogeneous computing system.

 The concept of using spare desktop CPU cycles for
extensive accelerator design studies has been validated.
The scalability of the run_environment and associated
data structures needs to be improved to cope with the very
large number of runs and results which are now possible

Figure 6: Survival time as a function of the initial
amplitude.

Figure 7: Dynamic Aperture as a function of the initial
angle

REFERENCES
[1] SETI@home: http://setiathome.ssl.berkeley.edu/
[2] BOINC: http://boinc.berkeley.edu/
[3] LHC@home: http://cern.ch/athome
[4] MAD8: http://cern.ch/mad/
[5] SixTrack: http://cern.ch/frs
[6] SPEC FP2000 Benchmark Suite: http://www.spec.org/
[7] Lahey Fortran: http://www.lahey.com

http://setiathome.ssl.berkeley.edu/
http://boinc.berkeley.edu/
http://cern.ch/athome
http://cern.ch/mad/
http://cern.ch/frs
http://www.spec.org/
http://www.lahey.com/

	INTRODUCTION & OBJECTIVES
	Available Unused Computing Resources
	Workload for LHC design studies

	ACCELERATOR DESIGN STUDIES
	SIXTRACK ON WINDOWS
	CPSS ARCHITECTURE
	THE SIXTRACK RUN_ENVIRONMENT
	CPSS DEPLOYMENT & PERFORMANCE
	RESULTS
	REFERENCES

