
GENERIC LOGGING LAYER FOR THE DISTRIBUTING COMPUTING

 V. Fine*, J.Lauret, G..Van Buren
 BNL, Upton, NY 11733, USA

Abstract

Most HENP experiment software includes a logging or

tracing API allowing the display in a particular format of
important feedback coming from the core application.
However, inserting log statements into the code as a low-
tech method for tracing the program execution flow often
leads to a flood of messages in which the relevant ones are
occluded. In a distributed computing environment,
accessing the information via a log-file is no longer
practical as the approach fails to provide runtime tracing.

Running a job involves a chain of events where many
components may be written in diverse computing languages
which do not offer a consistent and easily adaptable
interface for logging important events.

We describe an approach based on a new generic layer
built on top of a logger family derived from the Jakarta
log4j project that includes the log4cxx, log4c, and log4perl
packages. This provides consistency across layers,
packages, platforms, and frameworks.

LOGGING API FOR HENP APPLICATION
Most HENP experiment software includes a logging or

tracing API allowing the display in a particular format of
important feedback coming from the core application.

Typical so-called “HENP production” jobs initiate a chain
of events where many components involved are often
written in diverse languages which do not offer a
consistent and easily adaptable interface for logging
important events.

Practical GRID case example
Most of the experiment frameworks offer a special

(sometimes even rather sophisticated) layer whose aim is to
provide the log messages from within the code which is
executed, allowing tracing of the program execution flow.
This output is typically redirected to a log file. In a
distributed computing environment, this standard approach
of accessing the information via a log file is insufficient as
it fails to provide runtime tracing.

In fact, the problem is more complicated than it appears,
as a typical “grid job” is often a complex workflow of meta-
jobs composed of several sub-jobs running in parallel. Each
given sub-job may be redirected to a different computing
resource and one may want to have the ability for an
individual job to trigger some action (abort the entire task or

meta-job, invoke a recovery service, alter workflow, etc.).
This action may be based on the program output or log
itself, providing the entire workflow can be traced and
individual jobs’ output related to one another.

To accommodate for the desirable components, we first
need to provide the necessary tools to collect the
information. Let us call such a tool a “logger”.

Consistency requirements
A meta-job requires a “meta-log” (Figure 1) to allow
detailed inspection of any or all steps of the process. But a
global overview of the process may require an abridged
summary, necessitating the capability to disable certain log
statements while allowing others to print unhindered. This
assumes that the logging space, that is, the space of all
possible logging statements, is categorized according to the
framework developer-chosen criteria. In addition, one
would like in a summary not to display or consider
repetitive, which entails filtering facilities. Finally, an event
severity and/or verbosity should accompany the display of
every event (or message).

Jakarta log4j project
Searching for a suitable logger component for the STAR
Grid production environment we found that an approach
based on a new generic layer, built on top of a logger family
derived from the “Jakarta log4j” [1] project, may provide
consistency across packages and frameworks. “Jakarta
log4j” is a community-supported project that includes the
log4cxx, log4c, and log4perl packages (thereby supporting
multiple computing languages) and encompassing four
main component types:

• loggers
• appenders
• layouts
• filters

These four types are necessary to empower the

developers with the capabilities to log messages according
to message type and level, to control at runtime how these
messages are formatted, and lastly to decide where they are
reported.

Run-time log configuration
Another advantage of using the log4j design [2] is the
possibility to enable logging (or features of it) at runtime
without modifying the application binary or the wrapper
layers. Debugging statements can remain in shipped code
without incurring a heavy performance cost. At the same
time the logger equips the developer with context as
detailed as necessary for understanding application failures,
from an amount of information appropriate for testing or
quality assurance, to a more limited set for production
mode.

STAR LOGGER-BASED MESSENGER
LAYER IMPLEMENTATION

Integration of the log4j packages and STAR offline
framework was straightforward due to an already existing
OO design for processing message streams [3]. Most (if not
all) components of the STAR production framework send
their log messages to the abstract STAR messenger.

To merge the STAR existing framework with the log4j
package, it was only a matter of creating another
implementation of the STAR messenger interface.
Additionally, and to meet the STAR production needs, a
standard set of the logger appender and filter features were
either developed or enhanced. We added one extra
appender to communicate with the STAR production
MySQL database and created a custom logger filter to be
able to select/suspend the messages according to the STAR
production manager’s criteria. Once again, and due to the
already existing OO messenger implementation in the
STAR production system, enabling the new scheme did not

require modifying any existing piece of the STAR code. It
was sufficient to dynamically load the new implementation
and provide an external XML configuration file for the
logger as needed.

CONCLUSION
 The implementation of the STAR logger layer via log4cxx
API has proven to be useful. It allows us to set
independently the level of the verbosity for each STAR
production “module”. This is convenient for the debugging
of the code as a whole as modules and classes are uniquely
identified by their message format. In addition, each
developer can set the message output levels for their own
modules. The capability exists to include special appenders
redirecting messages to a MySQL database or to HTML.
This is particularly useful in certain critical cases where it
allows us to get the job status on-line (via remote Db or
Web page) before the GRID delivers the entire (usually
large) log file to dig through. As needs for special treatment
of the log or events in the chain of processing arise, a
custom dynamically loaded appender filter can be
developed and deployed, with no further need for code
development or core application modification.

REFERENCES
[1] “Logging Services”, http://logging.apache.org/.
[2] Ceki Gülcü, "Complete log4j Manual" ,

https://www.qos.ch/shop/products/log4j
[3] “StMessMgr: The STAR Offline Message Manager”,

http://www.star.bnl.gov/STAR/comp/sofi/StMessMgr/

STAR meta-job

GRID realm

GRID jobs Job log file

Job log fileGRID jobs

Workflow

Figure 1: Example of a meta-job workflow for the STAR grid environment.

	GENERIC LOGGING LAYER FOR THE DISTRIBUTING COMPUTING
	LOGGING API FOR HENP APPLICATION
	Practical GRID case example
	Consistency requirements
	Jakarta log4j project
	Run-time log configuration

	STAR LOGGER-BASED MESSENGER LAYER IMPLEMENTATION
	CONCLUSION
	REFERENCES

