
CHOS, A METHOD FOR CONCURRENTLY SUPPORTING MULTIPLE
OPERATING SYSTEM

R. Shane Canon*, Cary L. Whitney, Lawrence Berkeley National Lab, Berkley, California 94523,

USA

Abstract

Supporting multiple large collaborations on shared
compute farms has typically resulted in divergent
requirements from the users on the configuration of these
farms. As the frameworks used by these collaborations
are adapted to use Grids, this issue will likely have a
significant impact on the effectiveness of Grids. To
address these issues, a method was developed at
Lawrence Berkeley National Lab and is being used in
production on the PDSF cluster. This method, termed
CHOS, uses a combination of a Linux kernel module, the
change root system call, and several utilities to provide
access to multiple Linux distributions and versions
concurrently on a single system. This method will be
presented, along with an explanation on how it is
integrated into the login process, grid services, and batch
scheduler systems. We will also describe how a
distribution is installed and configured to run in this
environment and explore some common problems that
arise. Finally, we will relate our experience in deploying
this framework on a production cluster used by several
high energy and nuclear physics collaborations.

INTRODUCTION
One challenge for system administrators running a

shared computer resource is the, often, divergent software
needs of the users. This is particular common for a
compute farm used by various High Energy Physics
collaborations. PDSF, a cluster run by the National
Energy Research Scientific Computing Center at
Lawrence Berkeley National Lab, is just such a cluster. It
provides computing for STAR, ATLAS, ALICE,
KamLAND, SNO, along with experiments in
Astrophysics. Recently, PDSF was faced with requests
for different versions of Linux by different groups. In this
paper, we present our solution to this problem. The
solution is a utility, which we term “CHOS” for CHroot
OS or CHoose OS.

OVERVIEW
When we have encountered request for different OSs in

the past, the cluster was partitioned and the different OSs
were installed on the partitions. While this satisfies the
user’s requirements, it has several drawbacks. The most
notable is the groups are only able to run on a subset of
the cluster. This can adversely impact our goal of trying
to obtain high utilization on the cluster and limits the

overall throughput available to a group. Another
approach was needed. The solution should possess the
following desired traits.

• Support multiple OSs concurrently on each node
• Not require partitioning the cluster
• Be nearly transparent to the users
• Integrate with the batch/scheduler system
• Easily deployable across the cluster
• Scale with the number of requested OS releases
The following assumptions were made.
• Only Linux distributions were expected to be

supported
• All of the Linux OSs would use the same kernel.
After some experimentation, we found that performing

a change root or chroot into an alternate OS tree could
provide the basis for a solution. The remainder of the
paper will describe how we accomplished the other
objectives and some of the issues that had to be
addressed.

DESIGN
While the chroot provides the beginnings of our

solution, it still lacks many of the desired traits. Most
obvious is even basic utilities such as ps, failed to
function correctly and home file systems are not visible.
This is easily resolved by mounting user file systems as
well as virtual file system under the chroot tree.
However, doing this for more than few OSs would
become bulky, since each OS might require dozens of
mounts and various auto-mounters. The desired approach
should allow a common tree to be used for several OSs.
This could not be accomplished with standard tools
running in user-land. In order to provide a complete
environment to the users, other approaches were required.
Ultimately, a custom kernel module was employed to
provide the needed functionality.

COMPONENTS
Here are the various components used in the framework

we developed:
• A base directory that all the chroot OSs will use.

We use /chos. This directory contains a series of
symbolic links residing in the base directory that
pass through a special symbolic link in the proc
file system (/proc/chos/link). This is depicted in
Figure 1. In addition, any file systems that are
required by the users must be mounted underneath

*canon@nersc.gov

this directory. This would also include virtual file systems such as proc.

Figure 1 This illustrates the /chos directory and gives an example of how the symbolic links are resolved for two
processes (A and B). In this example, process A has CHOS defined to use OS1 and process B has CHOS defined to use
OS2. Notice that in the kernel and base OS view, the /chos directory exists and the OS trees are accessible below the
/chos directory. In the chroot view, the /chos directory appears as the root directory.

• The custom kernel module which provides the
special symbolic link. This will be described in
further detail below.

• A pluggable authentication method (PAM) module
to transparently select the OS for a user upon
login.

• Modified grid services to implement CHOS for
Grid initiated jobs. Typically this would include
the various job managers.

• A custom job starter for the batch scheduler system
to automatically choose the correct OS when
starting a batch job.

• A Linux distribution installed in an alternate tree.
This can be installed locally on a node or in an
networked accessed file system, such as NFS

The Kernel Module
The core of our framework is the custom kernel

module. This module provides a symbolic link that
possesses the following characteristics:

• Resolves to a path that is dependent on the process
requesting the lookup.

• The path is settable by a process through a user-
land interface

• Child processes automatically inherit the path of
the parent, unless the process explicitly changes it.

To set the path, the target path is written into another file
in the proc file system (/proc/chos/setchos).

An array of structures is created that has a number of
elements equal to the maximum process identifier (PID),
as illustrated in Figure 2. This approach was chosen for
its ease of implementation and speed. If the PID space
were too large to make this approach appropriate, a
dynamic linked list could be used. Each process is
associated with the element equal to its PID. When a
process writes a new value into /proc/chos/setchos, the
associated element is updated. The path that is written
into the file is checked against a set of allowed paths. If
the path is allowed, then a new path structure is allocated
and the process entry is updated to reference this
structure. In addition, the process creation time [1] is
stored in the associated entry.

When a process tries to resolve the special link, the
module checks the processes corresponding element in
the array. If the element has a path assigned to it, then the
stored creation time is checked for consistency with the
actual process. This insures that a new process using a
recycled PID is handled correctly. If everything checks
out, the path is passed back to user land. If the element
does not have a path associated with it or the checks fail,
then the routine walks up the process tree (via the parent
process) until an element is found that passes all the
checks or the top (PID 1) is reached. In the later case, a
default value is returned, otherwise the value for the
ancestor is returned. Once the value is obtained, it is
stored in its associated entry in the array in order to speed
up subsequent calls. Once again, the stored creation time
is used to verify this cached entry.

Other Components
While the kernel module is the most specialized

component, the other pieces are equally important in
allowing CHOS to work seamlessly for the user. The key

 Figure 2. A diagram of the chos_proc array. This is an
array of chos_proc structures. This structure contains a
reference to a chos_link structure which contains the
actual text.

remaining components are the PAM module, the job
starter, and the alternate OSs. The role of these pieces is
to make the alternate OSs appear to the users like a native
installation of their required OS. In addition, modified
Grid daemons are used to allow transparent access for
Grid services.

The PAM module [1] checks the user’s home directory
for a file called .chos. If this file exists and it has a valid
OS path for its contents, then the PAM module will
automatically perform the steps to initiate a CHOS
session. This allows a user to automatically obtain a
specific OS upon login. The administrator simply needs
to specify the PAM module in the relevant configuration
file (i.e. /etc/pam.d/sshd) and the user edits their .chos file
to specify the preferred OS.

Seamless integration was also desired for jobs initiated
via the Grid. To accomplish this, a modified job manager
is used for the various Globus gatekeeper gateways.
Similar to the PAM module, the modifications allow the
job manager to examine the user’s .chos file to determine
which OS to use.

For full integration, the batch scheduler system should
be capable of running jobs in a CHOS OS. Furthermore,
most users would prefer that jobs automatically run using
the same OS under which the job was submitted. To
accomplish this, a special job starter was written. Similar
to the PAM module, the job start automatically performs
the steps to configure CHOS for the user. However,
rather than check a special file, the job starter looks for an
environment variable (CHOS). If this variable is set to a
valid path, then the appropriate steps are performed and
the job automatically runs under the preferred OS. The
PAM module, automatically sets this environment
variable, so no further steps are required by the user.

The final crucial piece is the actual alternate operating
systems. As stated earlier, only Linux distributions work
with CHOS. The alternate OSs must be installed in some
path accessed beneath the /chos tree, since other paths
will not be accessible after the chroot. The alternate OSs
can be either present on the local file system or accessed
via a networked mounted file system such as NFS. The
OSs includes the full tree that would normally be present
on a natively installed system. This can be created by
archiving and restoring an actual installation into a sub-
tree. Alternatively, for distributions that use RPM for
their package management, the “--root” directive can be
used to install RPMs to an alternate path.

SECURITY
Code running inside the kernel or with high privileges

needs to be designed with extra thought given to security
and CHOS is no exception. The current release of CHOS
has implemented several features to make it robust. First,
the chroot system call has been imbedded in the handler
that sets the path for the special link. This means that the
calling routine no longer needs to run with root privileges.
This does move some of the validation into the kernel
making it more complex. However, since the interfaces

between the kernel space and user space are more
constrained, this approach is more robust.

 The change root system call is privileged for a reason.
If a user can change root to an arbitrary directory, they
can easily construct a tree that could allow them to
elevate their privileges. To prevent this, CHOS allows the
administrator to limit which paths a users can select.
These paths would point to the various trees the
administrators has installed or validated.

While supporting additional distributions and releases
might imply greater security risks, this need not be the
case. All services would typically run out of the base
operating system. So the administrator would focus their
security efforts on this. Furthermore, set-UID programs
can be disabled in the CHOS OSs, in order to limit the
additional risks from these operating systems. The only
remaining potential vulnerabilities would primarily be
cross-user based exploits, which are generally less of
concern. As a result, CHOS can potentially help improve
security on a system. For example, if users need access to
an older release with known vulnerabilities, the
administrator can provide this environment under CHOS,
while running key services under a more secure and better
maintained base OS.

USES
While we initially designed CHOS to solve the

immediate problem of different groups requiring different
Linux distributions for production, we have since
discovered other uses. For example, in the past we have
designed sophisticated login files to initialize the
environment for users in various groups. With CHOS, we
could instead provide a specific CHOS OS for each group
and do the customization on the CHOS OS. This means
we can adjust the environment for a single group without
inadvertently affecting other groups. CHOS can also be
valuable for groups migrating to a new OS release or
distribution. They can continue their production in the
stable OS, while using CHOS to migrate and test
applications in the new OS. CHOS can also allow the
base OS to be upgraded independently of the OSs used by
the users. This allows the administrator to keep the base
OS up to date and secure with less impact on production
users.

Perhaps a more intriguing use of CHOS is with the
Grid. Currently, many projects developing Grid
frameworks build binary packages and distribute these
across the various resources. This approach typically
assumes a standardized OS across the sites. As more
large collaborations attempt to exploit the Grid this may
present a problem similar to what was encountered on
PDSF. Using CHOS, collaborations could distribute a
CHOS OS along with the other packages. Using this
approach the groups could be confident that the OS
exactly matched the reference system and potential
mismatches could be avoided.

CURRENT STATUS AND FUTURE
DIRECTIONS

The version of CHOS which we have described in this
paper is the current version, 0.4. Previous versions of
CHOS have been used in production on PDSF for nearly
the past year. While we have discovered a few initial
flaws in our design, it has run almost problem free. Users
often do not even realize that they are running on a
system that does have there selected OS natively installed.
All known issues with CHOS have been addressed or
have a designed fix. In addition to these minor fixes,
future releases will focus on simplifying installation and
deployment.

CHOS has been tested with 2.4 and 2.6 kernels. Base
operating systems under which CHOS has been
successfully employed include RedHat, SuSE, Fedora,
and Scientific Linux. CHOS OSs include RedHat,
Fedora, Scientific Linux. In addition, CHOS has been
tested with multiple versions of most of these
distributions. A custom job starter has been used with
Platform’s LSF and the Sun GridEngine batch scheduling
systems. CHOS is distributed as both a tar image and
RPM format and is licensed under a modified BSD
license. These packages can be obtained from the CHOS
web site [3].

CONCLUSION
We have described a typical problem encountered on

large shared clusters and presented our solution. As was
stated earlier, CHOS has been in production on PDSF for
nearly a year. It has enabled us to satisfy varying OS
requirements presented by different groups. Furthermore,
CHOS has given the administrators greater flexibility in
upgrade schedules for the base OS. However, the real
elegance of CHOS is that users often do not even realize
that they are using it.

ACKNOWLEDGMENTS
This work was funded by the Department of Energy

Office of Science under contract number DE-AC03-
76SF00098.

REFERENCES
[1] Daniel P. Bovet and Marco Cesati, Understanding the

Linux Kernel, 2nd Edition (2004).
[2] http://www.kernel.org/pub/linux/libs/pam/.
[3] http://www.nersc.gov/nusers/resources/PDSF/chos/

