A vendor-unlocked GPU reconstruction
for the ALICE Inner Tracking System

Matteo Concas, for the ALICE collaboration

CHEP 2023, May 9th

ALICE

mailto:matteo.concas@cern.ch

ALICE data processing for Run 3

e [rigger-less acquisition: continuous readout
* The stream of data is split into O(10ms) timeframes

e Lint>10 nb ! of PbPb data at 50kHz: 50x more than Run 2

e Online reconstruction and calibration for data compressionl’]

« Synchronous: TPC full reconstruction and calibration

 Asynchronous: all compressed data are reconstructed

* Single computing framework for online-offline computing: O2

e Operate part of the reconstruction on G

PUs Is mandatory

* Minimise the cost/performance ratio for online farm
« 250x Event Processing Nodes (EPNs), 8x AMD MI50 GPUs

e Efficient utilisation of available computing resources is desired

 (Other detectors' reconstruction demands more resources

* Alarger fraction of GPUs available during the asynchronous phase

[1] "The O2 software framework and GPU usage in ALICE online and offline reconstruction in Run 3"

Matteo Concas, for the ALICE collaboration - CHEP 2023

ALICE

FLP

EPN farm

TO/TH

Detector Data links

> 3.5 TB/s

Readout nodes

> 900 GB/s

ALICE

Synchronous processing
(during data taking)

_

~

——

Disk buffer 80GB

= =

Asynchronous processing
(during no-beam periods)

~

~130 GB/s

NS

Permanent storage

|

Raw data (TF)

Compressed raw data (CTF)

AQODs

https://indico.jlab.org/event/459/contributions/12432

TS reconstruction iIn Run 3

@ A new upgraded Inner Tracking System
A cylindrical silicon detector, is the innermost detector of the apparatus

 Thin layers, 12.5 billion pixels and 10 m2 of sensitive area

* Provide spatial information in the form of clusters of fired pixels

e Continuous readout, continuous trac

K reconstruction

* Digital signals from pixels are clusterised and compressed
 Timeframes are divided into Readout Frames (ROF): ~4us

« (Collision data can split across multiple adjacent rofs

e New standalone vertexing and tracking algorithm

* Single implementation steered via configuration (sync/async, collision system, ...)
* During synchronous reconstruction focuses on primaries (7 clusters-long tracks)
* During asynchronous reconstruction is sensitive to secondaries and tracks lower pr

* |In- and cross-bunch pile-up ready

Matteo Concas, for the ALICE collaboration - CHEP 2023

Beam pipe

Timeframe

ROF ...

ROF 0

ROF 1

ROF N

compressed
clusters of
pixels

compressed
clusters of
pixels

compressed
clusters of
pixels

TS vertexing and tracking

charged particle leaves hits

e Primary vertex seeding
* Look for correlations between hits in the three innermost ITS layers

clusters

« Combinatorial matching followed by linear extrapolations of tracklets
* Unsupervised clustering to find the collision point(s)

e [rack finding and track fitting

* Uses vertex position to reduce the combinatorics in matching the hits
* (Connect segments of tracks, the cells, into a tree of candidates: roads
« Kalman filter to fit tracks from candidates and apply quality cuts

e [he algorithm is decomposable into multiple parallelisable steps {}

 ALICE Data Processing Layer manages parallel Timeframe scheduling

* Each ROF can be processed independently®

 In-frame combinatorics can be processed simultaneously ROFO | ROF1 | ROF.. | ROFN
* Current CPU implementation can profit from multi-threaded sections ~clusters |- clusters - clusters
- vertices - vertices - vertices
- tracklets - tracklets - tracklets
- cells - cells - cells
- roads - roads - roads
- tracks - tracks - tracks

) Information from adjacent ROFs can be used to recover from information splitting

Matteo Concas, for the ALICE collaboration - CHEP 2023

A parallel implementation using GPUSs

ALICE

® Accelerate the processing using massively parallel architectures
* Promising porting of some routines based on CUDA and OpenCL in the past

ITS tracking workflow

e Today: offload the whole vertexing and tracking on GPUs

» Release the corresponding CPU cycles, improving resource usage efficiency GPU reconstruction instance

Reco Chains)

Reco chain ...)/
B 4
ITS reco chain)

\ ITS HIP library

. J

ITS CPU library

* Integrate it into the broader reconstruction GPU chain by extending its coverage

ITS CUDA library

) () ()
J ./ ___/

N\)

o First phase: load and operate standalone GPU tracking for TS
* Mainstream reconstruction framework provides the interface for GPU lib loading \ J Available if GPU autodetection

 ThelTS GPU library fully manages graphics card resource L

ITSVertexer* = GPUChain.getITSTraits(GPU/CPU);
* Easy-to-contribute: plain C++ and CUDA code, focus on routines development | [TsTracker® = GPUChain.getITSTraits (GPU/CPU)

ITSVertexer->doVertexing() ;
ITSTracker->doTracking() ;

« Supports CUDA and HIP with a single code base, no compatibility layer [

I

e Second phase: build a GPU reconstruction chain including ITS
« (Centrally manage GPU memory and kernel scheduling for deeper integration

* Easier to later add additional steps like the ITS-TPC matching

Matteo Concas, for the ALICE collaboration - CHEP 2023

Cornerstones of the GPU implementation

ALICE

GPU DRAM memory

e Resource usage flexibility via configuration total
« The amount of usable memory is a parameter that is passed to the algorithm . \Ufab'e dedifa;ed <
* All required chunk sizes are set as a fraction of the total available memory chunk 1 || chunk 2 || chunk 3
J

e Multi-threaded streams process bunches of ROFs In parallel
« Each POSIX thread manages a stream, and the full tracking is independent

Threads: A
- 1/O
- Kernels

« Optimise throughput by hiding memory loads behind kernel executions

Layer O: clusters

* Average timeframe size changes under different conditions: we cope with that!

i I Layer 1: clusters
| |

e Use case extensibility via a generic N-layers implementation |
* All the routines in the vertexing and tracking are "local”: no need to know N-layers

Layer N: clusters

« TrackerGPU<NLayer s> offers native support for future use cases (ITS3/ALICES)
Host registered memory

Matteo Concas, for the ALICE collaboration - CHEP 2023

Cross-platform on-the-fly code generation

ALICE

e The O2 compilation via CMake, provides

* Platform autodetection and production of corresponding target libraries
* (Custom commands setting dependencies between targets cudaMalloc (sA_d, Nbytes);

cudaMalloc (&C d, Nbytes);
cudaMemcpy (A d, A h, Nbytes, cudaMemcpyHostToDevice) ;

e HIP code is generated in place from CUDA sources vector square <<<512, 256>>> (C_d, A_d, N);
. . cudaMemcpy (C h, C d, Nbytes, cudaMemcpyDeviceToHost)
* Build source of targets parsing CUDA files and generating HIP versions

* Currently based on hipify-perl:isrunonall . cu files to produce HIP hipMalloc (¢2_d, Nbytes);

hipMalloc (&C d, Nbytes);
hipMemcpy (A d, A h, Nbytes, hipMemcpyHostToDevice) ;

* Develop and maintain a single code base in place of two

hipLaunchKernelGGL (vector square, 512, 256, 0, 0, C d, A d, N);

* No need to add a portability layer hipMemcpy (C_h, C_d, Nbytes, hipMemcpyDeviceToHost);

® Headers files are shared across both the compilations
* Negligible boilerplate (<0.1% LoCs) to cope with some architectural differences

Matteo Concas, for the ALICE collaboration - CHEP 2023 7

State of the development and testing

e Names of the steps are the main phases of the algorithms
 GPU-ported implementations are usually more complex due to data organisation

« Comparison with CPU is made when steps in both versions produce the same output

@ The vertexing is fully operative in its GPU implementation
* Timeframe chunking is natively supported, as no extra-ROF information is required

e [he porting of tracking Is being finalised
* The last fully ported step is the neighbour finder for cells

 Road finder is under development: size and number of found roads are not static
* Track fitting had a POC, which requires an in-depth review

e [ested on both Nvidia and AMD cards
* First setup: workstation with AMD Ryzen™ 9 7950X CPU and Nvidia™ TITAN Xp

 Second setup: EPN node with 2x AMD EPYC™ 7452 and AMD Instinct™ MI50

Matteo Concas, for the ALICE collaboration - CHEP 2023

ALICE

Vertexer
Tracklet Finder
Tracklet Selection
Vertex Fitter

Tracker
Tracklet Finder
Trkl duplicate finder
Cell finder
Cell neighbour finder
Road finder 455
Track fitting £3

Clock (GHz) | RAM (GB)

AMD Ryzen™ 9 7950X| 4.5-5.7 128
Nvidia™ TITAN Xp 1.586 12
AMD EPYC™ 7452 2.35-3.25 512

AMD Instinct™ MI50

1.725

32

Preliminary performance W,

Elapsed Time [ms] |AMD EPYC™ | AMD Ryzen™ | AMD MI50 [Nvidia™ TITAN Xp H LICE

Vertexer 2913+376 1416183 291+38 478+64
. ' Tracker (Neigh. Finder) 550+71 287+37 21127 779+105
e [otal timing measured on real data
Tracker Full 13756+1780 691/7+893 55 o4

* A batch of 5 timeframes of pp collisions @500kHz

GPU ITS vertexer elapsed time vs memory

 (CPU is run in single thread configuration

700

EE -
Py - + » AMD MI50 —
. E 600 + vidia Titan N
e [hree reported scenarios PR Ty - tida ThenXp J -
» Full vertex finding on GPU and CPU I Malalet LIS T
« State-of-the-art tracking chain on CPU and GPU 300 g
* Full tracker run in the asynchronous configuration on CPU 2001 :
100 - :
e Considerations o s e s w0 s %
Memory (GB)

* The timing is promising if the primary goal is to trade GPUs for CPUs GPU ITS tracker (neigh-finder) elapsed timé vs memory
* The most time-consuming part is the track fitting, high rewards expected ooo.)
E - =
» Streaming chunks of a timeframe works successfully I '+ Nvidia Tian Y | =
-+ -
* Timing decreases with memory increasing, then reaches a plateau 00y :
600 - -
500 - E
400 - s
300§ - X s x WS i
200 - t : S8 eSS < —=
100 - s
O s H0 15 20 25 30

Matteo Concas, for the ALICE collaboration - CHEP 2023

Memory (G

o

Conclusions and outlook

ALICE

e ALICE plans to extend the coverage of GPU utilisation in the asynchronous reconstruction
 The goal is to increase the efficiency in using the resources when TPC does not have the monopoly

e [TS is finalising the porting of the seeding vertexer and tracking
* Road finding and track fitting, the last missing components, are under active development

* Performance in pp collisions from actual data is not final but shows some promising margin
* A full investigation of heavier conditions such as PbPb will show the fundamental capabilities and limitations

e Optimisation of the algorithms is to start after the finalisation of the porting
* Tuning for GPU parameters can be performed with general-purpose tools for optimisationll

e GPU adoption in the ITS software chain can be further extended
« Signal digitisation and Clusterisation part are good candidates that are being considered

[1] "A parameter optimisation toolchain for Monte Carlo detector simulation”

Matteo Concas, for the ALICE collaboration - CHEP 2023

https://indico.jlab.org/event/459/contributions/11442/

BaCcKup

Heterogeneous-Compute Interface for Portabi\ity

e Support GPUs from two main vendors:
 CUDA language and runtime for Nvidia

* HIP language and ROCm runtime for AMD

e HIP: a C++ Runtime APl and Kernel language
* Portable AMD and NVIDIA applications from single source code

* |tis shaped around CUDA APlIs to ease translation
 CUDA libraries, like Thrust and CUB, have their HIP versions using ROCm

e ROCm has tools to translate CUDA to HIP automatically
« hipify-clang: based on Clang, actual code translation

* hipify-perl: script for line-by-line code conversion

e Strategy: maintain only the CUDA code and generate HIP

Matteo Concas, for the ALICE collaboration - CHEP 2023

ALICE

_ M.

RO

Dehvermg An Open Platform F or GPU Computmg

h developer needs as heterogeneous programming model evolve

Language Runtime API

ROCr System Runtlme API

ROCm Driver

12

