
THE O2 SOFTWARE
FRAMEWORK AND GPU

USAGE IN ALICE ON AND
OFFLINE RECONSTRUCTION

IN RUN3*

David Rohr, Giulio Eulisse for the ALICE Collaboration

*i.e. Everything you wanted to know about ALICE Software but you were too afraid to ask.

PLACEHOLDER

CHALLENGES FOR ALICE IN RUN 3

 pp pPb PbPb

From < 1 kHz single events in Run 2...

...to 50 kHz of continuous readout data in (PbPb) Run 3.

Overlapping events in TPC with realistic bunch structure @ 50 kHz PbPb

Timeframe of 2 ms shown (will be 11 ms in production)

Tracks of different collisions shown in different colour

2

➤ Completely new detector readout and substantial
detector upgrades: new ITS, MFT, FIT. New GEM for TPC
readout.

➤ Reconstruct TPC data in continuous readout in
combination with triggered detectors.

➤ Reconstruct O(100x) more events online.

➤ Store O(100x) more events (needs factor 36x for TPC
compression). Cannot store all raw data, use GPUs to do
compression online.

➤ WLCG "flat budget" scenario (4x more resources over 10
years, for 100x more events). Use online GPU farm
offline to speedup processing.

ALICE IN RUN 3: THE O2 PROJECT

FLP

FLP

EPN

FLP

De
te

ct
or

EPN

EPN

≳3.4 TB/s 
(~45GB/s in Run 2)

up to 900 GB/s

...

Readout

Synchronous 
reconstruction 
(data reduction)

On-site 
storage

EPN / Grid

...

Asynchronous 
reconstruction 

(improved conditions)

EPN / Grid

EPN / Grid Permanent 
storage

3

up to 130 GB/s 
(~10GB/s in Run 2)

EPN input data quantum is the
"timeframe": ~2.8 ms of continuous

readout data. ~2.5 GB

EPNEPNEPNEPN

BEAM ON: data reduction

BEAM OFF: improved calibration

120 PB 
(1 PB in Run 2)

200 nodes

350 nodes 
with 8xGPUs 

per node

Takeaway message:

One integrated system, from data taking to

final reconstruction (and beyond).

Transport Layer: ALFA / FairMQ

➤ Joint collaboration with FAIR and GSI

➤ Standalone processes (devices) for deployment flexibility

➤ Message passing as a parallelism paradigm

➤ Shared memory backend for reduced memory usage and improved performance

➤ Seamless remote communication

4

O2: SOFTWARE FRAMEWORK IN ONE SLIDE

Data processing happens in separate processes, called devices.

ALFA / FAIRMQ: GENERAL IDEA

5

Device

ALFA / FAIRMQ: GENERAL IDEA

6

Device 1 Device 2 Device 4

Device 3

Multiple devices form a topology. Devices exchange messages over so called channels.

ALFA / FAIRMQ: GENERAL IDEA

7

Device 1 Device 2 Device 4

Device 3

Certain "expendable" devices are allowed to die without killing the processing.

When running on the same node, message passing is actually optimised via the shared memory backend provided by
FairMQ. Only pointers in shared memory are exchanged.

ALFA / FAIRMQ: GENERAL IDEA

8

Device 1 Device 2

▣*ptr

▣*ptr

Sh
ar

ed
 M

em
or

y

Seamless and homogeneous support for multi-node setups using one of the network enabled message passing backends,
e.g. InfiniBand with RDMA.

ALFA / FAIRMQ: GENERAL IDEA

9

Device 1 Device 2

▣*ptr

▣*ptr

Sh
ar

ed
 M

em
or

y

Device 3

Ne
tw

or
k

O2: SOFTWARE FRAMEWORK IN ONE SLIDE

10

Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends:

➤ Simplified, zero-copy format optimised for performance and direct GPU usage.

➤ ROOT based serialisation. Useful for QA and final results.

➤ Apache Arrow based. Backend of the analysis data model and for integrating with other tools.

➤ We contributed the RDataFrame Arrow backend to ROOT.

Transport Layer: ALFA / FairMQ1

➤ Joint collaboration with FAIR and GSI

➤ Standalone processes (devices) for deployment flexibility & resilience.

➤ Message passing as a parallelism paradigm

➤ Shared memory backend for reduced memory usage and improved performance

➤ Seamless remote communication

O2: SOFTWARE FRAMEWORK IN ONE SLIDE

Framework &

Data Processing Layer (DPL)

Hides the hiccups of a distributed system, presenting a familiar "Data Flow" system.

➤ Reactive-like design (push data, don't pull)

➤ Implicit workflow definition via modern C++ API.

➤ Core common tasks: topological sort of dependencies, deployment of generated topologies, data lifecycle

handling, service management, common infrastructure services, plug-in manager.

➤ Integration with the rest of the production system, e.g. Monitoring, Logging, Control.

11

Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends:

➤ Simplified, zero-copy format optimised for performance and direct GPU usage.

➤ ROOT based serialisation. Useful for QA and final results.

➤ Apache Arrow based. Backend of the analysis data model and for integrating with other tools.

➤ We contributed the RDataFrame Arrow backend to ROOT.

Transport Layer: ALFA / FairMQ1

➤ Joint collaboration with FAIR and GSI

➤ Standalone processes (devices) for deployment flexibility

➤ Message passing as a parallelism paradigm

➤ Shared memory backend for reduced memory usage and improved performance

➤ Seamless remote communication

O2 DATA PROCESSING LAYER

12

readeCTF reader
reader

device

O2 DPL

User provides a description in
terms of tasks and physics 
quantities.

O2 Data Processing Layer (DPL)
translates the implicit workflow(s)
defined by physicists to an actual
FairMQ topology of devices, injecting
readers and merger devices,
completing the topology and taking
care of parallelism & rate limiting.

Results.root

MergerDevice 1 Device 2 Device 3

Task 1

Task 2 Task 3

DATA PROCESSING LAYER: BUILDING BLOCK

A DataProcessorSpec defines a pipeline stage as a
building block.

➤ Specifies inputs and outputs in terms of the O2 Data
Model descriptors.

➤ Provide an implementation of how to act on the inputs
to produce the output.

➤ Advanced user can express possible data or time
parallelism opportunities.

a b

AlgorithmSpec

DataProcessorSpec

InputSpec OutputSpec

13

DATA PROCESSING LAYER: IMPLICIT TOPOLOGY

B

C

B D
E

D

C E

Data Processing Layer

Topology is defined implicitly.

Topological sort ensures a viable dataflow is constructed (no cycles!).

Laptop users gets immediate feedback through the debug GUI.

Service API allows integration with non data flow components (e.g. Control)

14

15

Debug GUI

16

4 FairMQ devices  
exchanging messages in a

diamond topology

17

GUI shows state of the
various message queues in

realtime. Different colors
mean different state of data

processing.

Clicking on a node provides
the log

18

NUMA
Domain 1

GPU
Processing

Shared
Input

NUMA
Domain 2

Shared CPU
Processing

Shared CPU
Processing

Output

Takeaway message:

DPL allows building FairMQ

topologies in an implicit way.

O2: SYNC RECONSTRUCTION

DATA PROCESSING LAYER: INTEGRATION WITH THE CONTROL SYSTEM

20

Each device runs a finite state machine.

DATA PROCESSING LAYER: INTEGRATION WITH THE CONTROL SYSTEM

21

An external control is responsible to transition states. At P2 this is integrated with the Experiment
Control System... while on the user laptop or on the grid we have a DPL driver process with such role.

START
Control

DATA PROCESSING LAYER: INTEGRATION WITH THE CONTROL SYSTEM

22

START

An external control is responsible to transition states. At P2 this is integrated with the Experiment
Control System... while on the user laptop or on the grid we have a DPL driver process with such role.

DATA PROCESSING LAYER: INTEGRATION WITH THE CONTROL SYSTEM

23

START

An external control is responsible to transition states. At P2 this is integrated with the Experiment
Control System... while on the user laptop or on the grid we have a DPL driver process with such role.

Takeaway message:

DPL abstracts away integration

with the control system and
deployment.

O2: ASYNC RECONSTRUCTION

Takeaway message:

One single framework, from

sync reconstruction to async and
beyond.

O2: ASYNC RECONSTRUCTION

Extra perk:

The GUI can be reached from a

web client connecting to a
websocket, allowing debugging
even when running deployed.

DATA PROCESSING LAYER: EVENT LOOP

26

The Data Processing Layer (DPL) actually implements the Running state of a Device.

Running

DATA PROCESSING LAYER: EVENT LOOP

27

The (epoll / kqueue based) event loop only wakes up the device when there is something to do, e.g. handle
incoming data to process using the user provided code.

Update loop time

Events?

Run timers

Receive pending
data

Input
data complete?

No

Run user callback
on completed inputs

By default, we process inputs asynchronously, where we can have more
than one timeframe in fly at the same time. Horizontal parallelism.

DATA PROCESSING LAYER: PARALLELISM OPPORTUNITIES

28

Device 1 Device 3Device 2

Data
Processor 1

Data 
Processor 2

Data 
Processor 3

Timeframe 2 Timeframe 1 Timeframe 0

Different parts of a given timeframe can be processed in parallel. 
Vertical Parallelism.

29

Device 1 Device 3Device 2

Data
Processor 1

Data 
Processor 2

Data 
Processor 3

Device 4

Data 
Processor 4

DATA PROCESSING LAYER: PARALLELISM OPPORTUNITIES

Without precautions, timeframes pile up in the input queue of the slowest
device.

DATA PROCESSING LAYER: RATE LIMITING

30

Device 1 Device 3Device 2

Data
Processor 1

Data 
Processor 2

Data 
Processor 3

31

Device 1 Device 3Device 2

Data
Processor 1

Data 
Processor 2

Data 
Processor 3

Timeframe 0Timeframe 1

processed = 0

DATA PROCESSING LAYER: RATE LIMITING

A back-channel reporting how many timeframes were processed to the source device
is used to limit the number of in-fly timeframes.

32

Device 1 Device 3Device 2

Data
Processor 1

Data 
Processor 2

Data 
Processor 3

Timeframe 0Timeframe 1

processed = 0

DATA PROCESSING LAYER: RATE LIMITING

A back-channel reporting how many timeframes were processed to the source device
is used to limit the number of in-fly timeframes.

33

Device 1 Device 3Device 2

Data
Processor 1

Data 
Processor 2

Data 
Processor 3

Timeframe 1

processed = 1

First device ensures (read - processed) < max-in-fly

DATA PROCESSING LAYER: RATE LIMITING

A back-channel reporting how many timeframes were processed to the source device
is used to limit the number of in-fly timeframes.

34

Device 1 Device 3Device 2

Data
Processor 1

Data 
Processor 2

Data 
Processor 3

Timeframe 1

processed = 1

DATA PROCESSING LAYER: RATE LIMITING

Timeframe 2

A back-channel reporting how many timeframes were processed to the source device
is used to limit the number of in-fly timeframes.

35

Device 1 Device 3Device 2

Data
Processor 1

Data 
Processor 2

Data 
Processor 3

Timeframe 1

freed = 1 GB

First device ensures (allocated - freed) < max-available-memory

DATA PROCESSING LAYER: RATE LIMITING

Besides the number of timeframes, we have the possibility to rate limit
based on other quantities, e.g. available shared memory.

Parts of the chain can be faster due to offloading to GPUs. We can easily increase the
number of downstream devices to increase throughput (at the cost of memory).

DATA PROCESSING LAYER: PIPELINING

36

Device 1 Device 3Device 2

Data 
Processor 2

Data 
Processor 3

Timeframe 0
Timeframe 1

DPL allows to specify pipelining for a given DataProcessors, providing easy parallelisation
of processing.

37

Device 1 Device 3

Device 2
t0

Data 
Processor 2

"t0"

Timeframe 0

Device 2
t1

Data 
Processor 2

"t1"

Timeframe 1

DATA PROCESSING LAYER: PIPELINING

1-to-1 mapping between Devices and DataProcessors not mandatory!

DATA PROCESSING LAYER: MULTIPLEXING

38

Device 1 Device 3Device 2

Data
Processor 1

Data 
Processor 2

Data 
Processor 3

We allow multiple DataProcessors to run cooperatively on the same device. This is
currently ad-hoc, e.g. for digitisation. We are working to have it available in a generic

way for the cases where the extra protections of multiprocessing are not needed.

DATA PROCESSING LAYER: MULTIPLEXING

39

Device 1 Device 2

Data
Processor 1

Data 
Processor 2Data 

Processor 3

We are working to integrate multiplexing and pipelining features to allow
multithreaded execution of (thread safe) data processors.

DATA PROCESSING LAYER: FUTURE

40

Device 1

Device 4Device 2

Device 3

Data Processor 3 - T1Data Processor 2 - T1

Data Processor 2 - T0 Data Processor 3 - T0

Data Processor 2 - T3

Data Processor 2 - T2

Data Processor 3 - T3

Data Processor 3 - T2

Data Processor 2 - T5

Data Processor 2 - T4

Data Processor 3 - T5

Data Processor 3 - T4

