

Managing build infrastructure at ALICE using Hashicorp Nomad

Computing in High Energy Physics 2023, Norfolk, VA

Timo Wilken^{1 2} Giulio Eulisse²

2 May 2023

¹E-mail: timo.wilken@cern.ch ²for the ALICE Collaboration

What do we build?

- O²: ALICE's online (data-taking) and offline (physics analysis, Monte-Carlo simulation) software suite
- ▶ Run 2 software still maintained for analysing old data
- ► pseudo-distribution of O² dependencies
 - ▶ designed to function on top of recent versions of CentOS, Alma, Ubuntu, MacOS, ...
- ▶ nightly release builds, CI compilation checks, unit and integration tests
- ▶ 1 non-trivial CI check completed every 2 minutes, on average
 - plus lots of fast rebuilds where nothing has changed
- ▶ ...all on multiple platforms (mostly) through containerization

Architecture overview

- Nomad for job scheduling
 - long-running jobs: custom continuous integration builders, Jenkins builders
 - web services: user account administration websites, tarball servers
 - scheduled/"cron" jobs: software repository maintenance and cleanup
- ► Consul
 - ► job discovery: *.service.consul DNS
 - ► Traefik auto-config for web access
 - ► job monitoring: simple health checks
- ► Vault stores secrets, using Consul as backend
- Prometheus and InfluxDB metrics of the whole cluster monitored and visualised using Grafana

Reasons for switching away from Mesos and Aurora

-			
mesos / i	mesosci		ation_el8.x86_64
Configur	ation O	verview	
0			
configuration	details for ins	tances 0	
resources			
constraints dedicated:*/nocompile			
production true			
tier preferred			
service			
container			
Instance Status		Host	
	+ 25 days a	go - RUNNING	

- ► previous stack: Mesos + Marathon + Apache Aurora
- Aurora not intensively developed any more
- requires Python 2 (EOL since 2020) on server and developers' machines
 - difficult to install, deploy and maintain
- ► some features difficult to integrate with or nonexistent
 - autoscaling (or even manual scaling without restarts of all jobs)
 - difficult to keep build caches "hot"
 - little monitoring and alerting integration

Improvements with Nomad + Consul + Vault

- simple deployment: static binary + systemd/launchd service + configuration = 3 files
- ► first-class support for web services: health checks, autoconfiguration
- ▶ better secrets management: Vault instead of passwords in a Git repo
- ▶ excellent monitoring & alerting support through Prometheus
 - resource use statistics (CPU, memory, disk)
 - alerts when build machines are unavailable or have problems
- ► ...more features, for deeper future integration

Web services: health checks $\overset{\circ}{\operatorname{\mathcal{C}}}$ Traefik autoconfiguration

Monitoring example: Nightly build performance

FIGURE: CPU use of a sequence of nightly builds as a fraction of total allocated CPU resources (usually the entire VM).

Monitoring example: Nightly build performance

FIGURE: Working memory (RSS) use of a sequence of nightly builds. Total available memory on a typical build VM in green.

Rough edges

- 1. Nomad's handling of disk space allocation
 - restarting daemon with non-empty disk confuses Nomad's accounting
 - ► can cause scheduling issues much further down the line
 - must manually clean up the node and restart the Nomad agent process
- 2. integration with CERN single sign-on
 - ▶ rely on Nomad/Consul/Vault tokens for authentication
 - ► could integrate SSO with Vault, which would then issue Nomad/Consul tokens
 - ▶ client certificate authentication is supported, so we use that in addition to tokens

Future work integrating build infra with Nomad

- ▶ "true" autoscaling, based on real-time demand
 - manual scaling already much smoother than previously: build caches are kept most of the time, existing builders uninterrupted
 - remaining challenge is cache invalidation: scaling often invalidates multiple gigabytes of cached builds
- temporary configuration (e.g. for testing software deployment) through Consul instead of text files
- get build secrets from Vault only when needed, instead of storing them in env variables and relying on sanitisation during build

QUESTIONS?

Useful links

- ► aliBuild: alisw.github.io/alibuild
- CI & ALICE software documentation: alisw.github.io
- ► ALICE O2 user guides: aliceo2group.github.io

Contact details

timo.wilken@cern.ch