
Particle identification with machine
learning in ALICE Run 3

Maja Kabus,
Monika Jakubowska, Kamil Deja,

Łukasz Graczykowski,
Miłosz Kasak

on behalf of the ALICE Collaboration
CHEP, 05.2023

2

The ALICE experiment

ALICE – one of the experiments at the
Large Hadron Collider (LHC) at CERN

Heavy-ion collisions → production of
quark-gluon plasma (QGP)
● beginnings of the Universe
● neutron stars

LHC Run 1+2 configuration

3

Particle identification (PID)

ITS TPC TOF

Aim: provide high purity samples of particles of a given type

● an essential step for many physics analyses, especially quark-gluon plasma measurements
● a distinguishing feature of ALICE among the LHC experiments:

○ identification of particles of momenta from 100 MeV/c up to 20 GeV/c
○ very good separation of pion, kaons, protons, electrons
○ all known techniques employed: dE/dx energy loss, time-of-flight, Cherenkov radiation for

hadrons and transition radiation for electrons

4

Present state-of-art
1. Traditional method:

○ hand-crafted selections of selected quantities, e.g., nσ
○ problems:

■ overlapping signals
■ time-consuming optimization

2. Bayesian method (arxiv:1602.01392):
○ updating probability of an hypothesis with each new data (evidence)
○ priors = best guess of true particle yields per events
○ posteriors ~ purity
○ increased purity, results consistent with the traditional method

Both methods available in O2Physics – ALICE Run 3 software:
https://aliceo2group.github.io/analysis-framework/

Can we go any better?
nσ method: high purity above 0.9 at the cost of low efficiency → can we balance?

TPC

https://arxiv.org/pdf/1602.01392.pdf
https://aliceo2group.github.io/analysis-framework/

5

Machine learning for PID
● classification problem – a ML ''standard''
● can use more track parameters as input
● can learn more complex relationships
● many software libraries available

Note also the limitations:

● good quality of the training data
● hard to obtain systematic uncertainties
● hard to follow classifier's ''reasoning''

Machine learning can greatly improve purity and efficiency of identified particles
● random forest: T. Trzciński, Ł. Graczykowski, M. Glinka, ALICE Collaboration. Using Random Forest classifier for

particle identification in the ALICE experiment. Conference on Information Technology, Systems Research and
Computational Physics, pp. 3-17. 2018

● domain adaptation: M. Kabus, M. Jakubowska, Ł. Graczykowski, K. Deja, ALICE Collaboration. Using machine
learning for particle identification in ALICE. JINST, v. 17, p. C07016. 2022

● details in backup

https://link.springer.com/chapter/10.1007/978-3-030-18058-4_1
https://iopscience.iop.org/article/10.1088/1748-0221/17/07/C07016

6

Dealing with incomplete data
At present: simple neural network, 19 features: momenta, spatial coordinates, charge sign, DCA
XY, DCA Z, alpha angle, track type, TPC shared clusters, detector signals

Data might be missing from one or more other detectors due to, e.g., too small pT
Challenge: How can we keep classifying without making any assumptions about the missing values?

Feature Set Embedding (article):
● instead of vectors, use (feature, value) pairs; no value → no pair
● map pairs into an embedding space of fixed dimension: similar features close to each other
● predict output class from embedded vectors
● 2 functions (networks) to learn: (feature, value) pairs→embeddings, embeddings→class

Bonus: simultaneous learning
of variants with and without
given feature

Image source: article

https://proceedings.neurips.cc/paper/2010/file/5f0f5e5f33945135b874349cfbed4fb9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/5f0f5e5f33945135b874349cfbed4fb9-Paper.pdf

7

1.
2.
3.
4. Classifier: a simple neural network for a specific particle specie

a. "certainty" in range (0, 1) that a given particle belongs to the given specie

One step further: the attention mechanism

details in backup

1.
2.
3. Self-attention to pool the encoder output set into a single vector

1.
2. Transformer Encoder to detect patterns in the input

Inspired by AMI-Net proposed for medical diagnosis from incomplete data

1. Feature Set Embedding to encode the inputs
a. one-hot encoding of feature indices for easier processing

https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1904.04460

8

Test setup
5 methods for incomplete data:
● imputation

○ mean
○ linear regression

Hyperparameter sweep to choose best model for each method

Dataset: Run 2 general-purpose MC pp at √s = 13 TeV simulated with Pythia8 and Geant4

Particle species distribution in the dataset

pion:
43.59%

kaon:
3.415%

proton:
2.026%

electron:
0.794%

muon:
0.323%

antipion:
43.66%

antikaon:
3.288%

antiproton:
1.819%

antielectron:
0.762%

antimuon:
0.321%

● case deletion
● neural networks ensemble
● attention + FSE

Missing data distribution

architecture details
in backup

muon muon

9

Results – particles
F1 = (purity x efficiency) / (purity + efficiency)

FSE + attention with
highest scores of F1
on incomplete data
for all particle species.

Efficiency also highest
for the attention model.
Purity slightly
bigger for other models
in some cases.

π p K

model purity efficiency F1 purity efficiency F1 purity efficiency F1

mean 0.9718 0.9934 0.9825 0.9559 0.8927 0.9232 0.8858 0.8081 0.8452

regression 0.9723 0.9931 0.9826 0.9520 0.8973 0.9328 0.8795 0.8168 0.8470

case deletion – – – – – – – – –

NN ensemble 0.9745 0.9914 0.9829 0.9607 0.8895 0.9237 0.8751 0.8207 0.8470

attention + FSE 0.9734 0.9937 0.9835 0.9648 0.9009 0.9318 0.8841 0.8337 0.8581

π,
only complete data

p,
only complete data

K,
only complete data

model purity efficiency F1 purity efficiency F1 purity efficiency F1

mean 0.9862 0.9945 0.9904 0.9817 0.9737 0.9777 0.9210 0.9334 0.9272

regression 0.9885 0.9920 0.9903 0.9721 0.9841 0.9781 0.9043 0.9450 0.9242

case deletion 0.9884 0.9946 0.9915 0.9715 0.9840 0.9777 0.9449 0.9365 0.9407

NN ensemble 0.9895 0.9929 0.9912 0.9757 0.9818 0.9787 0.9272 0.9530 0.9399

attention + FSE 0.9884 0.9941 0.9913 0.9799 0.9825 0.9812 0.9249 0.9595 0.9419

10

Results – antiparticles
F1 = (purity x efficiency) / (purity + efficiency)

FSE + attention with
highest scores of F1
and purity
on incomplete data
for all antiparticles.

Efficiency slightly
bigger for other models
in a few cases.

π p K

model purity efficiency F1 purity efficiency F1 purity efficiency F1

mean 0.9710 0.9928 0.9818 0.9352 0.8815 0.9076 0.8531 0.8013 0.8264

regression 0.9716 0.9924 0.9819 0.9415 0.8773 0.9082 0.8715 0.7914 0.8295

case deletion – – – – – – – – –

NN ensemble 0.9725 0.9928 0.9826 0.9528 0.8717 0.9105 0.8578 0.8174 0.8371

attention + FSE 0.9727 0.9939 0.9831 0.9579 0.8805 0.9176 0.8870 0.8059 0.8445

π,
only complete data

p,
only complete data

K,
only complete data

model purity efficiency F1 purity efficiency F1 purity efficiency F1

mean 0.9869 0.9940 0.9905 0.9693 0.9695 0.9694 0.8990 0.9329 0.9156

regression 0.9889 0.9913 0.9901 0.9565 0.9747 0.9655 0.8962 0.9437 0.9193

case deletion 0.9886 0.9942 0.9914 0.9663 0.9687 0.9675 0.9324 0.9226 0.9275

NN ensemble 0.9887 0.9944 0.9915 0.9668 0.9745 0.9707 0.9216 0.9488 0.9350

attention + FSE 0.9885 0.9950 0.9918 0.9731 0.9758 0.9745 0.9326 0.9434 0.9380

11

Domain Adversarial Neural Networks (DANNs)
feature mapping: input → domain invariant features
particle classifier: recognize particles based on domain invariant latent space
domain classifier: recognize MC vs real samples

Training more complicated:

1. Train the domain classifier independently.
2. Freeze the domain classifier.
3. Train jointly particle classifier and feature mapper

adversarially to the domain classifier.
4. Weights of the feature mapper:

gradient from particle classifier
+ reversed gradient from domain classifier

Application time similar to a standard classifier

12

Summary and outlook
Summary:

● machine learning is a promising way to identify particles with higher purity and efficiency
● Feature Set Embedding with Multi-Head Attention improve F1 score for PID on incomplete

data

Plans:

● test in an analysis task
● test on MC data from the next LHC data-taking period (Run 3)
● add domain adaptation and test on the new real data
● regular production of models for the new data-taking period

Thank you for your
attention!

Backup

15

Random Forest (RF) on Run 2 data
Preliminary work in 2019 for LHC Run 2

Tomasz Trzciński, Łukasz Graczykowski, Michał Glinka, ALICE Collaboration, et al. Using Random Forest classifier for particle
identification in the ALICE experiment. In Conference on Information Technology, Systems Research and Computational
Physics, pages 3–17. Springer, 2018

Why Random Forest?

● a set of decision trees, each trained on a random subset of the training data
● easy to parallelize, e.g., on GRID
● resistant to overfitting

Our approach

● tree generation: Gini index
● selection: majority of votes by trees
● adaptive boosting

16

Run 2 results
● pp at 7 TeV, Pythia 6 Perugia-0
● kaons vs other particles

Traditional PID:

MC traditional MC RF

Contamination of kaon samples

much higher
efficiency and purity
with Random Forest

17

Baseline – plain vanilla neural networks
● one neural network model per particle and per set of detectors
● results for using all detectors; ML PID, traditional approach

purity =
precision /
specificity

efficiency =
recall /
sensitivity

pion

pion

kaon

kaon

proton

proton

18

Domain adaptation
Training set: labeled data → MC samples
Apply set: unlabeled real data with different distributions of attributes
 → worse performance on real data

How can we transfer the knowledge from training to inference?

Standard PID example: ''tune on data''

● get parametrization from data → real data
● generate a random detector signal → MC data
● equivalent distributions of real and MC samples – the differences are statistical fluctuations

Machine learning:

● actually learn the difference between data domains
● translate both data to a single common hyperspace

19

First results of domain adaptation
● pp data at 13 TeV, LHC Run 2
● training: PYTHIA 8 with Monash tune
● classification improved – reduction of contamination
● more research ongoing

No domain adaptation With domain adaptation

20

Simple network implementation
● linear layers with Leaky ReLU, sigmoid at the end
● simple: dropout after each linear layer

Parameters:

● optimizer: Adam
● output layer: 1 node (yes / no for a given particle)
● loss function: binary cross entropy
● scheduler: exponential with rate 0.98
● learning rate: 0.0005
● batch size: 64
● epochs: 30

21

Example: FSE with one-hot encoding
From the article in preparation

22

The attention continued
2. Transformer Encoder

N=2

● adjusted original Transformer
Encoder

● attention without convolutions and
recurrence

● finding self-correlations in an
instance set of vectors

● example: a specific detector signal
could be used if and only if the
momentum is in a specific range

modified diagram
from the article

https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

23

Pooling and final classification
Classifier: a simple neural network
 expects a single vector as an input

Solution: self-attention to pool the variable-size vector set from Transformer Encoder

Classifier score: logistic function , range (0, 1)
 "certainty" that a given particle belongs to the given specie

self-attention values

self-attention weights

pooled output vector

24

Architecture of tested neural networks
Imputations, case deletion, and NN ensemble
● 3 hidden layers of sizes 64, 32, 16 with ReLU activation
● dropout 0.1 after each activation layer
● input size:

○ imputations and case deletion: 19 as all missing features are imputed
○ ensemble: 4 networks with input sizes 19, 17, 17, 15

Attention + FSE
● embedding layers: 20 – 128 – 32 neurons
● Transformer Encoder:

○ Multi-Head Attention: dimension 32, 2 heads
○ neural network layers: 32 – 128 – 32 neurons
○ 2 layers of Multi-Head Attention + neural network

● Self-Attention layers: 32 – 64 – 32 neurons
● classifier layers: 32 – 64 – 1 neurons
● dropout 0.1 at the output of embedding and each Transformer Encoder layer
● ReLU activation between neural network layers

25

Integration with O2Physics: user interface

PidOnnxModel

● 1 instance = 1 model = 1 particle specie recognized (yes / no)
● convenient interface clearly separated from the rest of analysis
● using all capabilities of Python ML libraries for training
● ONNX file format and ONNXRuntime software used for inference in O2 C++ environment

PidOnnxInterface

● automatically select most suitable model for user needs or manual mode
● as little additional knowledge from the analyser as possible

26

Sample ROC curves
FSE+attention achieves best results.

Little variation between particle species.

