Radiation Hard Optical Fibres for LHC

» Project Status and Outlook «

Fraunhofer

Institut Naturwissenschaftlich-Technische Trendanalysen

Foreword: Recapitulation of project definition / aim

Estimations for first year

Current project status

> Future possibilities

2006-03-13

INT

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

Foreword: Recapitulation of project definition / aim

• Are we still on track or even loosing track (Email by Luit)?

Estimations for first year Institut Current project status Technische Trendanalysen

2006-03-13

INT

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

Slide 3

RIAOF Meeting at CERN, 2006-03-13

Recap of project definition / aim

Offer by INT, accepted by CERN:

• Aim of project:

under different conditions (see below). To identify the best possible alternative, a comparative study will be conducted with fibres of other manufacturers and newly developed fibres from Draka.

• Extension of phase 3:

On basis of the results for three different dose rates, it will be tried to develop a model that allows a realistic extrapolation of the results to other dose rates, with a special emphasis on lower dose rates, including annealing.

Reorientation after meeting September 2005:

- 1. Continuation of the tests out with a re-orientation.
- Emphasis on dose rate dependency and annealing respecting as much as possible the future LHC machine cycles (anneal 3 times).

New experimental task

No new need for direct modelling, <u>but required input data</u>!

2006-03-13

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

Assumptions

- Best fibre in 60Co also (one of the) best in mixed field
- Dose rate dependence very important factor
- Best fibre for mean dose rate also (one of the) best in application
- "Model" presented by Fraunhofer INT
 - Extrapolation to lower dose rates for comparing fibres
 - <u>No predictive ambition</u>
- Origin of misunderstanding
 - Fraunhofer INT showed dose and days in figures
- Lesson learned during project
 - Radiation environment very complex

2006-03-13

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

How to predict the radiation induced attenuation?

en nment: Inten spatial and ch hlogical distributi Calcuing of attention and anneig Reliable prediction of radiation effects under LHC conditions

Slide 6

2006-03-13

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

RIAOF Meeting at CERN, 2006-03-13

How to estimate the radiation induced attenuation?

2006-03-13

Fraunhofer Institut Naturwissenschaftlich-**Technische Trendanalysen**

Between CERN and INT it was agreed to answer the following:

- Are the measurements done by CERN for Draka 445755 giving a realistic estimation of the losses? NO!
- Are there fibres which can be operated reasonable at IR3 and IR7? YES! Within 3 Months!
- (June to Septem.) What are the best suited fibres? Several candidates with better performance identified!

- Questions which can/should be asked <u>after</u> this project:
 - How long might the fibres be operational at LHC?
 - Radiation environment has to be defined, e.g. first year, worst case.
 - As a consequence of this: What is the best solution?
 - Balance between costs and advantages.

2006-03-13

Fraunhofer Institut Naturwissenschaftlich Technische Trendanalysen

> Foreword: Recapitulation of project definition / aim

• Are we still on track or even loosing track (Email by Luit)?

Estimations for first year Institut Current project status Technische Trendanalysen

2006-03-13

INT

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

Estimations for first year

> LHC project note 375 (Lamont):

- Proton losses: $1.3 \cdot 10^{15}$ to $5.2 \cdot 10^{15}$ per year (in IR3 and IR7)
- Radiation levels in the UJ33 tunnel (Kurochkin):
 - Annual doses for IR3: 1000 1300 Gy

⇒Annual doses for IR7: 2500 - 4200 Gy

- Constraints (Wijnands):
 - Exposed length: ~ 300 m
 - Acceptable attenuation: ~ 8 dB

⇒Maximal attenuation: ~25 dB/km

> Question for first year (conservative):

• Induced attenuation after 5000 Gy below 15 dB/km?

2006-03-13

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

First year estimations

- > Assumed first year LHC operation conditions:
 - Dose: 5000 Gy
 - Mean dose rate:

2 mGy/s (corresponding to ~30 days exposition)

 Maximum tolerable attenuation: 15 dB/km

Source Fibre	Draka Predictions	Fraunhofer-INT "Model" (2005)	Fraunhofer-INT "Model" (2006)
Draka 445744	< 7 dB/km	< 5 dB/km	< 5 dB/km
Draka/CERN#4	< 5 dB/km	< 5 dB/km	< 3 dB/km

2006-03-13

INT

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

> All estimations show for assumed first year conditions:

- Draka 445755 and Draka/CERN #4 below thresholds
- No distinct difference between two Draka products except for different time/dose dependence

Very positive factors:

- The attenuation can (and will?) be constantly monitored
- Fibre optic dosimetry could give dose distribution (chronological and spatial)
- Suggestion: Using this input to adjust estimations

> Foreword: Recapitulation of project definition / aim

• Are we still on track or even loosing track (Email by Luit)?

Estimations for first year Institut

Current project status aturwissenschaftlich Future possibilities

2006-03-13

INT

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

Slide 13

RIAOF Meeting at CERN, 2006-03-13

Current status

- Measurements for phases 1, 2 and 3 finished
 - Presented in September 2005 and November 2005
- Final report for first part in preparation
 - Some changes in low dose rate extrapolation
- > Additional samples by Draka and Fujikura
 - Measurements of new Fujikura fibre completed (2005-12-13 to 2006-01-16)
 - New sample by Draka arrived last week at INT
 - Administrative details for additional samples to be clarified

2006-03-13

^r Institut Naturwissenschaftlich-Technische Trendanalysen

Wrap up of results: Screening

2006-03-13

Institut Naturwissenschaftlich-Technische Trendanalysen

Wrap up of results: Annealing and parameter influence

2006-03-13

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

Low dose rate extrapolation: Dose rate dependency

2006-03-13

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

Low dose rate extrapolation: Shifting result

2006-03-13

Fraunhofer Institut

Naturwissenschaftlich-Technische Trendanalysen

Low dose rate extrapolation: Vertical shift factors

2006-03-13

INT

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

2006-03-13

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

Results for sample Fujikura 2 compared to Draka/CERN #4

2006-03-13

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

Parameter influences and annealing of Fujikura 2

2006-03-13

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

> Foreword: Recapitulation of project definition / aim

• Are we still on track or even loosing track (Email by Luit)?

Estimations for first year Institut Current project status Future possibilities

2006-03-13

INT

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

Future possibilities - Questions for motivation

- > What are the main alternatives now?
 - Install now the definite fibre without future exchange
 - What input data would we need to decide this?
 - What output data would we need?
 - What precision/reliability would we need (safety margin)?
 - What time would be left to take the decision?
 - Install now an transitory fibre and maybe change it in the future
 - What time frame has to be taken into account (foreseeable occasion)?
 - What radiation environment is to be expected?
 - What would be a break-even time for the subsequent change?
 - Could we use this time to establish more realistic estimations?

2006-03-13

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

> Additional ⁶⁰Co testing for communication fibres

Calibration of P-doped fibre for dosimetry purposes

>Additional testing in mixed field

Naturwissenschaftlich-

Maybe other fibre optic radiation sensing options

Technische Trendanalysen

Additional ⁶⁰Co testing for communication fibres

Verification of low dose rate extrapolations (TK1000 facility)

- If for more reliable decision needed other dose rates can be realised at the "strong" source
- For irradiations up to some days

Interruptive irradiation up to high total dose (TK1000 facility)

- For some days one could do other tests with interrupting irradiation with special consideration of LHC conditions (1. Year?)
- Long term irradiation at very low dose rate (TK100 facility)
 - Lower dose rates (from 0.01 Gy/s to 0.1 mGy/s) over longer times possible at weaker source (lower costs, no interference)
- Interruptive irradiation for long time (TK100 facility)
 - Very realistic simulation of interrupted irradiation over weeks

2006-03-13

Naturwissenschaftlich-Technische Trendanalysen

Calibration of P-doped fibre for dosimetry purposes

Implementation of a fibre optic dosimetry system

- Application not only at now discussed zones IR3 and IR7
- Everything is available (sensors, infrastructure, equipment)
- Only data for interpretation of anyway acquired data is needed
- Possible extension: Integration and comparison with other dosimetry systems at LHC
- Reliable and proofed system used at several accelerators

2006-03-13

Naturwissenschaftlich-Technische Trendanalysen

Mixed field testing

- Compare response of communication fibres obtained with 60Co
- Compare bare fibres and cables with/without ducts
- Compare obtained dosimetry calibration for P-doped fibres

Other fibre optic radiation sensor systems

- Cherenkov-based systems
 - Very fast and sensitive
 - High time and local resolution
 - Radial resolution extendable
 - Very helpful for commissioning
 - Established system at several accelerators
 - Limited to shorter lengths or local installation
- Systems based on Bragg-Gratings
 - Extreme high dose range measurable (several 100 kGy)
 - Long range ability, many sensing location
 - Easy to deploy(?), some efforts in development needed

2006-03-13

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

Slide 29

RIAOF Meeting at CERN, 2006-03-13

Summary

Primary objectives of current project achieved

- Operation of optical fibres definitively possible
- Drastic differences between different products revealed
- Actual prediction of radiation effects (at least) very difficult
- Main question now: What is the best solution with the knowledge we have?
- Next question: What data would be needed or help to find lasting solution?

Possible application of fibre radiation sensors at LHC?

2006-03-13

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

