Status and plans of the COMPASS (NA58) Experiment

CERN

I N 🔚

Bakur Parsamyan

(AANL, INFN section of Turin and CERN) for the COMPASS collaboration

151st Meeting of the SPSC November 14th, 2023, CERN 14 November 2023

Based on the COMPASS Status Report CERN-SPSC-2023-035; SPSC-SR-338;

COMPASS collaboration

Common Muon and Proton Apparatus for Structure and Spectroscopy

 \odot

众

- 25 institutions from 13 countries – nearly 200 physicists (in 2022)
- CERN SPS north area
- Fixed target experiment
- Approved in 1997 (25 years)
- Taking data since 2002 (20 years)

International Workshop on Hadron Structure and Spectroscopy IWHSS-2022 workshop (anniversary edition) CERN Globe, August 29-31, 2022

COMPASS

COMPASS collaboration

Common Muon and Proton Apparatus for Structure and Spectroscopy

- 28 institutions from 14 countries
- nearly 215 physicists (in 2023: start of the Analysis Phase)
- CERN SPS north area
- Fixed target experiment
- Approved in 1997 (25 years)
- Taking data since 2002 (20 years)

Wide physics program COMPASS-I

- Data taking 2002-2011
- Muon and hadron beams
- Nucleon spin structure
- Spectroscopy

COMPASS-II

- Data taking 2012-2022
- Primakoff
- DVCS (GPD+SIDIS)
- Polarized Drell-Yan
- Transverse deuteron SIDIS 2022

3 new groups joined the COMPASS collaboration in 2023 UConn (US), AANL (Armenia), NCU (Taiwan)

COMPASS web page: http://www.compass.cern.ch

14 November 2023

 \odot

\$

COMPASS timeline

COMPASS timeline

COMPASS timeline

$COMPASS \rightarrow AMBER$ timeline

COMPASS data taking campaigns

Ó		
Ý	OMI	405
	25 yes	ars
	1997 - 2	2022

Beam	Target	year	Physics programme
μ+	Polarized deuteron (⁶ LiD)	2002 2003 2004	80% Longitudinal 20% Transverse SIDIS
		2006	Longitudinal SIDIS
	Polarized proton (NH ₃)	2007	50% Longitudinal 50% Transverse SIDIS
π K p	LH ₂ , Ni, Pb, W	2008 2009	Spectroscopy
μ+	Polarized proton (NH ₃)	2010	Transverse SIDIS
		2011	Longitudinal SIDIS
π K p	Ni	2012	Primakoff
μ^{\pm}	LH ₂	2012	Pilot DVCS & HEMP & unpolarized SIDIS
π-	Polarized proton (NH ₃)	2014	Pilot Drell-Yan
		2015 2018	Transverse Drell-Yan
μ^{\pm}	LH ₂	2016 2017	DVCS & HEMP & unpolarized SIDIS
μ^+	Polarized deuteron (6LiD)	2021 2022	Transverse SIDIS

COMPASS experimental setup

14 November 2023

•

14 November 2023

COMPASS experimental setup: Phase II (DY programme)

COmmon Muon Proton Apparatus for Structure and Spectroscopy

Broad Physics Program to study Structure and Excitation Spectrum of Hadrons

Nucleon structure

- Hard scattering of μ[±] and π⁻ off (un)polarized P/D targets
- Study of nucleon spin structure
- Parton distribution functions and fragmentation functions

Hadron spectroscopy

- Diffractive $\pi(K)$ dissociation reaction with proton target
- PWA technique employed
- High-precision measurement of light-meson excitation spectrum
- Search for exotic states

Chiral dynamics

- Test chiral perturbation theory in $\pi(K)$ γ reactions
- π^{\pm} and K^{\pm} polarizabilities
- Chiral anomaly $F_{3\pi}$

Broad Physics Program to study Structure and Excitation Spectrum of Hadrons

Hadron spectroscopy

- Diffractive $\pi(K)$ dissociation reaction with proton target
- PWA technique employed
- High-precision measurement of light-meson excitation spectrum
- Search for exotic states

Chiral dynamics

- Test chiral perturbation theory in $\pi(K)$ γ reactions
- π^{\pm} and K^{\pm} polarizabilities
- Chiral anomaly $F_{3\pi}$

2022-2023 analyses/activities

Study of π_1 states $\pi^- p \rightarrow b_1(1235)\pi)^- p$ $\pi^- p \rightarrow f_1(1285)\pi^- p$	ongoing study improved event selection
Study of π_1 states $\pi^- p \rightarrow \pi^- \eta^{(\prime)} p$	ongoing study improved event selection
Excited kaons in: $K^-p \rightarrow K^-\pi^-\pi^+p$	finalized (11 strange mesons) paper drafting
Chiral anomaly and radiative width of $\rho(770)$ $\pi^-\gamma \rightarrow \pi^-\pi^0$	systematic studies background subtraction
Excited kaons in: $K^-p \rightarrow \pi^- K_S^0 p$ $K^-p \rightarrow \Lambda pp$	ongoing study improved event selection
Isovector resonances in: $\pi^- p \rightarrow K^- K_S^{\ 0} K_S^{\ 0} p$	event selection finalized starting the PWA
Study ambiguities in PWA Novel methods for PWA	New: PWA continuity and regularization (information- field theory); Mathematical ambiguities – PWA
Technical MC advances $3\pi\gamma\gamma$ final state & beyond	New: Improved calorimetry simulations and calibrations

Increasing resolution scale

momentum transfer

Broad Physics Program to study Structure and Excitation Spectrum of Hadrons

Hadron spectroscopy

- Diffractive $\pi(K)$ dissociation reaction with proton target
- PWA technique employed
- High-precision measurement of • light-meson excitation spectrum
- Search for exotic states

Chiral dynamics

- Test chiral perturbation theory in $\pi(K)$ γ reactions
- π^{\pm} and K^{\pm} polarizabilities
- Chiral anomaly $F_{3\pi}$

2022-2023 analyses/activities

Study of π_1 states $\pi^- p \rightarrow b_1(1235)\pi)^- p$ $\pi^- p \rightarrow f_1(1285)\pi^- p$	ongoing study improved event selection
Study of π_1 states	ongoing study
$\pi^- p \rightarrow \pi^- \eta^{(\prime)} p$	improved event selection
Excited kaons in:	finalized (11 strange mesons)
$K^-p \rightarrow K^-\pi^-\pi^+p$	paper drafting

- Possible exotic strange meson
- (a supernumerary state in $J^P = 0^-$) B. Parsamyan

Broad Physics Program to study Structure and Excitation Spectrum of Hadrons

Nucleon structure

- Hard scattering of μ[±] and π⁻ off (un)polarized P/D targets
- Study of nucleon spin structure
- Parton distribution functions and fragmentation functions

Hadron spectroscopy

- Diffractive $\pi(K)$ dissociation reaction with proton target
 - PWA technique employed
- High-precision measurement of light-meson excitation spectrum
- Search for exotic states

Chiral dynamics

- Test chiral perturbation theory in $\pi(K)$ γ reactions
- π^{\pm} and K^{\pm} polarizabilities
- Chiral anomaly $F_{3\pi}$

OMPAS

Nucleon spin structure

• 1964 Quark model

- 1969 Parton model
- 1973 asymptotic freedom and QCD
- 1978 intrinsic transverse motion of quarks and azimuthal asymmetries

Hadron multiplicities; h^{\pm} , π^{\pm} and K^{\pm} (2016 data)

A set of complex corrections: $Q^2 (\text{GeV}/c)^2$ O^2 COMPASS proton data COMPASS preliminary Acceptance, diffractive VMs, 16.0 preliminary 0.30 < z < 0.40radiative corrections, PID, etc. h⁺ • h dM [≖]/dz x<0.01 0.01<x<0.02 0.02<x<0.03 0.03<x<0.04 0.04<x<0.06 3.0 P_T^2 (GeV/c)² 10 q... virtual photon k... scattered quark 10 p... from fragmentation P... outgoing hadron 10 dM^{π}/dz 1.00.06<x<0.10 0.10<x<0.14 0.14<x<0.18 x>0.18 COMPASS proton data $P_T^{2} ({\rm GeV}/c)^{2}$ P_T^2 (GeV/c)² $P_T^{2} ({\rm GeV}/c)^{2}$ preliminary 0.003 0.013 0.020 0.055 0.100 π^{*} π $81 \int Q^2 (\text{GeV}/c)^2$ $f_1^q(x, k_T^2)$ New 0.2< z <0.3 number density $_{81}$ $Q^2 (GeV/c)^2$ 0.2 0.4 0.6 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.4 16 0.3< z <0.4 $R_{1} \uparrow Q^{2} (\text{GeV}/c)^{2}$ x<0.01 0.01<x<0.02 0.02<x<0.03 0.03<x<0.04 0.04<x<0.06 0.4< z <0.6 $d^2 M$ $Q^2 (\text{GeV}/c)^2$ dzdP COMPASS deuteron data 0.6< z <0.8 PRD 97, 032006 (2018) $d^2 M^h$ 5 S S S $dz dP_{ha}^2$ $d^2 M^h$ 1.7 0.06<x<0.10 0.10 < x < 0.140.14<x<0.18 x>0.18 COMPASS proton data $dz dP_h^2$ preliminary 1 2 3 •K' •K 10^{-1} $\frac{d^2 M^h}{dz dP_{hT}^2} (GeV/c)^{-2}$ New 0.003 1 2 3 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.8 0.2 0.4 0.6 0.003 0.5 1 2 3 New radiative corrections 0.003 $P_{\rm T}^2 ({\rm GeV}/c)^2$ The corresponding article is being drafted 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

14 November 2023

B. Parsamyan

0.003

0.008

0.013

0.020

0.032

0.055

0.1

0.21

0.4

COMPASS

- 1D/2D/3D representations x_F:q_T:M
- Unique data to access pion TMD PDF

B. Parsamyan

0 0.2 0.4 0.6 0.8

 $\langle M \rangle = 6.2 (\text{GeV}/c^2)$

 $\langle q_x \rangle = 0.5 (\text{GeV}/c)$

IIII

 $\langle M \rangle = 6.2 (\text{GeV}/c^2)$

 $\langle q_{\tau} \rangle = 0.9 \, (\text{GeV}/c)$

 $x_{\rm F}$

0 0.2 0.4 0.6 0.8

 $\langle M \rangle = 6.2 (\text{GeV}/c^2)$

 $\langle q_{\rm T} \rangle$ =1.3 (GeV/c)

XE

0 0.2 0.4 0.6 0.8

0.05

0.02

0.01

0.00

 (GeV/c^2)

5.4

scaled by 3

 $\langle M \rangle = 6.3 (\text{GeV}/c^2)$

 $\langle q_{\tau} \rangle = 2.1 (\text{GeV}/c)$

scaled by 3

0 0.2 0.4 0.6 0.8

Nucleon 3D structure: GPDs

- Transverse position \vec{b}_T of partons
 - Correlation between \vec{b}_T and x
 - Complementary to TMD PDFs
- 8 generalized parton distribution functions (GPDs)
 - Contain information about parton orbital angular momentum
 - Mostly unknown
- COMPASS exclusive process measurements:
 - Deeply virtual Compton scattering (DVCS): $\mu + N \rightarrow \mu + \gamma + N$
 - Hard exclusive meson production (HEMP): $\mu + N \rightarrow \mu + VM + N$ with VM = π^0 , $\rho(770)$, $\omega(782)$,...

14 November 2023

Nucleon 3D structure: GPDs

- Transverse position \vec{b}_T of partons
 - Correlation between \vec{b}_T and x
 - Complementary to TMD PDFs
- 8 generalized parton distribution functions (GPDs)
 - Contain information about parton orbital angular momentum
 - Mostly unknown
- COMPASS exclusive process measurements:
 - Deeply virtual Compton scattering (DVCS): $\mu + N \rightarrow \mu + \gamma + N$
 - Hard exclusive meson production (HEMP): $\mu + N \rightarrow \mu + VM + N$ with VM = π^0 , $\rho(770)$, $\omega(782)$,...

14 November 2023

B. Parsamyan

 $d\sigma$ $\overline{dxdydzdp_{T}^{2}d\phi_{\mu}d\phi_{\varsigma}}$ $\left|\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right|\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$ $\times (1 + \sqrt{2\varepsilon(1+\varepsilon)} A_{UU}^{\cos\phi_h} \cos\phi_h + \dots)$ Cahn effect $f_1^q(x, k_T^2)$ number density

As of 1978 – simplistic kinematic effect:

non-zero k_T induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

Measurements by different experiments

Cahn effect in SIDIS

$$\frac{d\sigma}{dxdydzp_{r}^{2}d\phi_{d}\phi_{d}\phi_{s}} = \begin{bmatrix} \frac{\alpha}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{y^{2}}{2x}\right) \end{bmatrix} (F_{UU,T} + \varepsilon F_{UU,L})$$

$$\times (1+\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{mb}\cos\phi_{k} + ...)$$
Cahn effect

$$\int_{1}^{q'(x,k_{r}^{2})} \frac{1}{2(1-\varepsilon)} \left(1+\frac{y^{2}}{2x}\right) = \frac{1}{2} \int_{1}^{q'(x,k_{r}^{2})} \frac{1}{2(1-\varepsilon)} \int_{1$$

B. Parsamvan

14 November 2023

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \times (1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + ...)$$
Cahn effect
$$\int_{1}^{q} (x, k_T^2)$$
number density

As of 1978 – simplistic kinematic effect:

• non-zero k_T induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no comprehensive interpretation 0

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right)$$
$$\times (1 + \sqrt{2\varepsilon(1+\varepsilon)} A_{UU}^{\cos\phi_h} \cos\phi_h + ...)$$
$$Cahn effect$$
$$\int_{1}^{1} f_1^q(x, k_T^2)$$
number density

As of 1978 – simplistic kinematic effect:

non-zero k_{T} induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no comprehensive interpretation
- A set of complex corrections:
 - Acceptance, diffractively produced VMs, radiative corrections (RC), etc.
- Strong Q^2 dependence unexplained
 - Do not seem to come from RCs
 - Transition between TMD \leftrightarrow collinear regions?

14 November 2023

SIDIS cross-section (TMD PDFs) All measured by COMPASS $d\sigma$

 $\left|\frac{\alpha}{xvO^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right|\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$ $1 + \sqrt{2\varepsilon (1+\varepsilon)} A_{UU}^{\cos \phi_h} \cos \phi_h + \varepsilon A_{UU}^{\cos 2\phi_h} \cos 2\phi_h$ $+ \lambda \sqrt{2\varepsilon (1-\varepsilon)} A_{LU}^{\sin \phi_h} \sin \phi_h$ + $S_L \left[\sqrt{2\varepsilon (1+\varepsilon)} A_{UL}^{\sin \phi_h} \sin \phi_h + \varepsilon A_{UL}^{\sin 2\phi_h} \sin 2\phi_h \right]$ + $S_L \lambda \left[\sqrt{1 - \varepsilon^2} A_{LL} + \sqrt{2\varepsilon (1 - \varepsilon)} A_{LL}^{\cos \phi_h} \cos \phi_h \right]$ $A_{\mu\tau}^{\sin(\phi_h-\phi_S)}\sin(\phi_h-\phi_S)$ $+ \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S)$ + S_{T} + $\varepsilon A_{IT}^{\sin(3\phi_h-\phi_s)} \sin(3\phi_h-\phi_s)$ $+\sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\sin\phi_s}\sin\phi_s$ + $\sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\sin(2\phi_h-\phi_s)}\sin(2\phi_h-\phi_s)$ $\int \sqrt{\left(1-\varepsilon^2\right) A_{LT}^{\cos(\phi_h-\phi_s)} \cos\left(\phi_h-\phi_s\right)}$ $+ S_{\rm T} \lambda + \sqrt{2\varepsilon(1-\varepsilon)} A_{LT}^{\cos\phi_{\rm S}} \cos\phi_{\rm S}$ + $\sqrt{2\varepsilon(1-\varepsilon)}A_{LT}^{\cos(2\phi_h-\phi_S)}\cos(2\phi_h-\phi_S)$

14 November 2023

Х

 $dxdydzdp_T^2 d\phi_h d\phi_s$

SIDIS and Drell-Yan cross-sections (TMD PDFs)

OMPAS

14 November 2023

- 1st COMPASS deuteron measurements 2002-2004
- Collins and Sivers asymmetries compatible with zero within uncertainties.

14 November 2023

SIDIS TSAs: Collins and Sivers effects (proton)

- 1st COMPASS deuteron measurements Collins and Sivers asymmetries compatible with zero
- COMPASS proton measurements clear non-zero signal for both asymmetries
- 14 November 2023

B. Parsamyan

OMPAS

SIDIS TSAs: Collins effect and Transversity

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_s)} \sin(\phi_h + \phi_s) + \dots\right\}$

- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results COMPASS/HERMES (Q² is different by a factor of ~2-3)
- No impact from Q²-evolution?
- Extensive phenomenological studies and various global fits by different groups

14 November 2023

COMPAS

SIDIS TSAs: Collins effect and Transversity

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \dots\right\}$

• Measured on P/D in SIDIS and in dihadron SIDIS

OMPAS

- Compatible results COMPASS/HERMES (Q² is different by a factor of ~2-3)
- No impact from Q²-evolution?
- Extensive phenomenological studies and various global fits by different groups

COMPASS 2022 run

146th Meeting of the SPSC – minutes:

- SPSC is pleased by the synergistic approach in making optimal use of the beamline and commends COMPASS for taking the lead in this.
- The Committee notes with pleasure the readiness to take physics data, looks forward to a successful
 completion of the data collection for the transversity measurement, and supports the priority given to
 COMPASS during 2022 to complete its physics goals.

147th Meeting of the SPSC – draft minutes:

- The Committee acknowledges the efforts of COMPASS and of the other M2 beam line collaborations for the constructive and accommodating cooperation during the 2022 run.
- The committee congratulates COMPASS on the completion of a successful twenty years long datataking program, resulting in important contributions to nuclear and particle physics.

- Overall very good performance of all detector systems and DAQ
 - No critical problems on the spectrometer side; high data collection efficiency
 - Increased DAQ capacities thanks to the optimizations carried out during the run
 - New monitoring tools to guarantee fast detection of detector problems
- After disastrous 2021... Quite smooth/good performance of all Polarized Target systems
 - Excellent performance of Gunn diodes (first tested in 2021, two more diodes purchased for 2022 run)
 - Average polarization is about 40-42%
 - smaller than the average ~50% polarization obtained when the material was last used in 2006 (i.e. 16 years ago)
 - Great support of CERN cryo division and PT magnet experts

- Overall very good performance of all detector systems and DAQ
 - No critical problems on the spectrometer side; high data collection efficiency
 - Increased DAQ capacities thanks to the optimizations carried out during the run
 - New monitoring tools to guarantee fast detection of detector problems
- After disastrous 2021... Quite smooth/good performance of all Polarized Target systems
 - Excellent performance of Gunn diodes (first tested in 2021, two more diodes purchased for 2022 run)
 - Average polarization is about 40-42%
 - smaller than the average ~50% polarization obtained when the material was last used in 2006 (i.e. 16 years ago)
 - Great support of CERN cryo division and PT magnet experts
- SPS proton delivery to T6 excellently matched our request
 - Some unfortunate incidents causing down-times (e.g. PS POPS issues after the TS)
 - Despite very crowded injector schedule, a lot of tests and different operation-modes on accelerator side, the SPS efficiency was good enough (~73%, 82% in 2010)
 - Stable M2 beamline operation, no major incidents or problems
 - Tireless help and assistance from our beam physicists and BE department

Thanks to CERN for being such a great host laboratory for COMPASS for so many years!

- Total protons delivered on the production target:
 - ~ 5.95×10^{18} in ~150 days
 - ~ 98% of the request!

Thanks to CERN for being for so many years a great host laboratory for COMPASS!

SPS efficiency: ~ 73% Spectrometer efficiency: ~ 90% Physics data collection efficiency: ~ 75%

Highly successful Run in 2022!

COMPASS 2022 run: new unique deuteron data

OMPASS

COMPASS 2022 run - highly successful data-taking!

• 2nd COMPASS deuteron measurements conducted in 2022: unique SIDIS data for the next decades

COMPASS 2022 run - highly successful data-taking!

• 2nd COMPASS deuteron measurements conducted in 2022: unique SIDIS data for the next decades

Single-polarized Drell-Yan cross-section at twist-2 (LO)

COMPASS phase-II proposal submitted in 2010 (Drell-Yan, DVCS,...) Predictions for a large Sivers effect in Drell-Yan and J/ ψ at COMPASS \rightarrow sign change test

14 November 2023

B. Parsamyan

COMPASS

B. Parsamyan

14 November 2023

DY TSAs at COMPASS (high-mass range)

Theory curves based on S. Bastami et al. JHEP 02, (2021),166

- General agreement with available theory/model predictions
- **COMPASS** data favors sign-change hypothesis for the Sivers TMD PDF
- **COMPASS** data also ۰ seem to favor pion Boer-Mulders TMD PDF signchange (model-based)

 $x_{\rm N}$

Conclusions

- COMPASS holds the record for the longest-running CERN experiment (20 years of data-taking)
- Series of successful and important measurements addressing nucleon spin-structure
 - Inclusive measurements, unpolarized and polarized SIDIS (longitudinal/transverse)
 - o First-ever polarized Drell-Yan measurements
- A wealth of (SI)DIS, Drell-Yan, DVCS, HEMP data collected across the years
 - Petabytes of data available for analysis
- Wide and unique kinematic domain accessing low x and large Q^2
 - o Will remain unique for at least another decade
- World-unique SIDIS deuteron data collected in 2022
 - o Highly successful run, promising preliminary results, analysis in full swing!
- Since 2023 the experiment entered the Analysis Phase
 - The spectrometer has been transferred to the COMPASS successor in the M2 beamline – the AMBER collaboration
 - 3 new groups (+1 under discussion) joined COMPASS Analysis Phase in 2023
- United COMPASS AMBER community
 - \circ Pool of experts, shared software, similar measurements \leftrightarrow analysis know-how, etc.
- Building connections with theorists and experiments
 - o LHCb, LHC-FT, Spin-Quest, JLab 12/24 GeV, EIC, etc.

Joint XX-th International Workshop on *compass* Hadron Structure and Spectroscopy

and 5-th Workshop on Correlations in Partonic and Hadronic Interactions

Yerevan, Armenia 30 September – 4 October, 2024

Spare slides

COMPASS→AMBER timeline

Nucleon spin structure: collinear approach ↔ TMDs compass

• PDFs – universal (process independent) objects; T-odd PDFs – conditionally universal

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_s} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \times (1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + ...)$$
Cahn effect
$$\int_{1}^{q} (x, \mathbf{k}_T^2)$$
number density

As of 1978 – simplistic kinematic effect:

• non-zero k_T induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no comprehensive interpretation
- A set of complex corrections:
 - Acceptance, diffractively produced VMs, radiative corrections (RC), etc.
- Strong Q² dependence unexplained
 - Do not seem to come from RCs
 - Transition between TMD ↔ collinear regions?

-0.6 -0.4 -0.2

 $\stackrel{0.4}{(p_L^+ - p_L^-)} \stackrel{0.6}{/} \stackrel{0.8}{(p_L^+ + p_L^-)}$

 10^{-1}

 10^{-2}

0

0

0.2 0.4 0.6 0.8

55

0.2 0.4 0.6 0.8

Ζ

 $0.6\,0.8 \ 1 \ 1.2$ $p_{_{\rm T}} \,({\rm GeV}/c)$

1 T 1 10 Y VIII UVI 2023

ی. arsamyan

 $d\sigma$ $- \propto \left(F_{UU,T} + \varepsilon F_{UU,L} \right) \left\{ 1 + \dots + S_{\mathrm{T}} A_{UT}^{\sin(\phi_h - \phi_s)} \sin\left(\phi_h - \phi_s\right) + \dots \right\}$ $dxdydzdp_T^2 d\phi_h d\phi_s$

1st COMPASS multi-D fit done for all eight TSAs

B. Parsamyan

COMPASS

COMPASS Multi-D TSA analyses

 $\frac{a \omega}{dx dy dz dp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_S)} \sin\left(\phi_h - \phi_S\right) + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin\left(\phi_h + \phi_S\right) \dots \right\}$

SIDIS and single-polarized DY x-sections at twist-2 (LO) compass

$$\frac{d\sigma^{LO}}{dxdydzdp_{T}^{2}d\phi_{h}d\phi_{S}} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \qquad \text{SIDIS}$$

$$\times \begin{cases} 1 + \varepsilon A_{UU}^{\cos 2\phi_{h}} \cos 2\phi_{h} \\ + S_{L} \varepsilon A_{UL}^{\sin 2\phi_{h}} \sin 2\phi_{h} + S_{L}\lambda\sqrt{1 - \varepsilon^{2}}A_{LL} \\ \\ + S_{T} \varepsilon A_{UT}^{\sin(\phi_{h} - \phi_{S})} \sin(\phi_{h} - \phi_{S}) \\ + \varepsilon A_{UT}^{\sin(\phi_{h} - \phi_{S})} \sin(\phi_{h} + \phi_{S}) \\ + \varepsilon A_{UT}^{\sin(3\phi_{h} - \phi_{S})} \sin(3\phi_{h} - \phi_{S}) \end{bmatrix} \\ + S_{T}\lambda \left[\sqrt{(1 - \varepsilon^{2})}A_{LT}^{\cos(\phi_{h} - \phi_{S})} \cos(\phi_{h} - \phi_{S})\right] \end{cases}$$

$$\frac{d\sigma^{LO}}{dq^4 d\Omega} \propto F_U^1 (1 + \cos^2 \theta_{CS}) \qquad \text{DY}$$

$$\begin{cases} 1 + D_{[\sin^2 \theta_{CS}]} A_U^{\cos 2\varphi_{CS}} \cos 2\varphi_{CS} \\ + S_L \sin^2 \theta_{CS} A_L^{\sin 2\varphi_{CS}} \sin 2\varphi_{CS} \\ + S_T \left[+ D_{[\sin^2 \varphi_{CS}]} \left(A_T^{\sin(2\varphi_{CS} - \varphi_S)} \sin (2\varphi_{CS} - \varphi_S) \\ + A_T^{\sin(2\varphi_{CS} + \varphi_S)} \sin (2\varphi_{CS} + \varphi_S) \right) \right] \end{cases}$$
where $D_{[\sin^2 \theta_{CS}]} = \sin^2 \theta_{CS} / (1 + \cos^2 \theta_{CS})$

$$\int \frac{q^2 d\Omega}{q^2 d\Omega} \left(\frac{A_T^{\sin(2\varphi_{CS} - \varphi_S)} \sin (2\varphi_{CS} - \varphi_S)}{q^2 d\Omega} + \frac{A_T^{\sin(2\varphi_{CS} + \varphi_S)} \sin (2\varphi_{CS} + \varphi_S)}{q^2 d\Omega} \right) \left(\frac{q^2 d\Omega}{q^2 d\Omega} - \frac{q^2 d\Omega}{q^2 d\Omega} \right)$$

• Sign-change of T-odd Sivers and Boer-Mulders TMD PDFs;

• Multiple access to Collins FF $H_{1a}^{\perp h}$ and pion Boer-Mulders PDF $h_{1,\pi}^{\perp q}$ 14 November 2023

Single-polarized DY measureme

counts (rescaled)

HM events are in the valence quark range

ents at COMPASS

$$\frac{d\sigma^{LO}}{dq^4 d\Omega} \propto F_U^1 (1 + \cos^2 \theta_{CS})$$

$$= \begin{cases} 1 + \left[\sum_{\sin^2 \theta_{CS}} A_U^{\cos 2\varphi_{CS}} \cos 2\varphi_{CS} \right] \\ + S_L \sin^2 \theta_{CS} A_L^{\sin 2\varphi_{CS}} \sin 2\varphi_{CS} \right] \\ + S_T \left[A_T^{\sin \varphi_S} \sin \varphi_S \right] \\ + D_{\left[\sin^2 \theta_{CS}\right]} \left(A_T^{\sin(2\varphi_{CS} - \varphi_S)} \sin \left(2\varphi_{CS} - \varphi_S\right) \right] \\ + A_T^{\sin(2\varphi_{CS} + \varphi_S)} \sin \left(2\varphi_{CS} + \varphi_S\right) \right] \end{cases}$$

 $4.3 < M/(GeV/c^2) < 8.5$ "High mass" range Beyond charmonium region, background < 3%Valence region \rightarrow largest asymmetries

14 November 2023

COMPASS 2022 run: SPS/COMPASS efficiencies

SPS efficiency: ~ 73% Spectrometer efficiency: ~ 90% Physics data collection efficiency: ~ 75%

• SPS efficiency: ~73% (82% in 2010)

COMPASS 2022 run: delivered/collected spills

OMPASS

COMPASS 2022 run: protons delivered by SPS

- COMPASS request in the approved proposal: 6.1×10¹⁸
- Total number of protons delivered on T6: ~5.95×10¹⁸ (98%) in about 150 days
- To be compared to $\sim 5.1 \times 10^{18}$ in about 162 days in 2010

- Overall very good performance of all detector systems and DAQ
 - No critical problems on the spectrometer side; high data collection efficiency
 - Increased DAQ capacities thanks to the optimizations carried out during the run
 - New monitoring tools to guarantee fast detection of detector problems
- After disastrous 2021...

Highlights on the 2022-Run preparations

DC04 (Saclay)

- Broken wire blocking the operation of Y-plane
- Repaired within just two weeks
- Noise on some of the planes (grounding issue)
- Further investigated during Year-End Technical Stop (YETS)
 DC05 (Illinois)
- Similar broken wire problem blocking one of the views
- Repaired during YETS
- Repaired within just two weeks

MWPCs (Torino)

- In general, fully operational
- Some noise problems:
 - aging of Al-Mylar windows (bad electrical connection)
 - PB05 station refurbished during YETS
- New iFTDC-based FE (Compatible with streaming readout)
- Installed/tested on one plane during 2021 run
- One station (PA05) fully equipped for 2022 run
- Spared 'old' FE cards used for the other stations in 2022 RICH-wall (Torino)
- Fully refurbished, installed and commissioned in June-2021
- Various frontend problems fixed: operated during 2021 run
- Further adjustments during YETS and comissioning-2022

Trigger hodoscopes: 2021-2022 repairs

LAST trigger (H01)

- Inefficient central slabs in 2015-2018
 - New central slabs: scintillators, air light guides, discriminators
 - All slabs checked and repaired if necessary
 - Positive impact with online monitoring; to be verified in the analysis stage

Outer trigger (HO3-HO4)

- Inefficient slabs in 2015-2018
 - New PMTs were delivered with a huge delay
 - Part of the PMTs installed during commissioning
 - Remaining PMTs were installed during the run
 - Clear improvements seen with online monitoring

-100

100

x(HO03Y1 m)(cm)

- Overall very good performance of all detector systems and DAQ
 - No critical problems on the spectrometer side; high data collection efficiency
 - Increased DAQ capacities thanks to the optimizations carried out during the run
 - New monitoring tools to guarantee fast detection of detector problems

25 years 1997 - 2022