

BERKELEY LAB

BBRv3 Preliminary Results

Eli Dart Brian Tierney LHCONE #52 Catania, Italy 11 April 2024

Motivation

- Understand how BBR behaves for R&E workloads
 - Specifically DTN / data transfer workloads
 - Relevant to other workloads too
- Understand implications for future deployments
 - Are there implications for routers, switches, etc?
 - What host configurations are useful?
- Spoiler: still more questions than answers

BBRv3: where are we?

- Improvements over BBRv2
 - BBRv2 was a *significant* improvement over BBRv1
 - Recommend against deploying BBRv1 in production
- BBR team is trying to get BBRv3 merged into mainline Linux kernel
 - They had hoped to have this done by now
- Unknown if BBRv3 will be the "final" version that makes it into production kernels
 - Appears likely, but not done yet

Cubic vs BBRv3

Ibl-dev-dtn1.es.net to cern773-ps-tp.es.net (100G) RTT = 150ms

Streams	CC Alg	Pacing (Gbps)	Tput (Gbps)	Stddev (nvals)	RXMTs
1	bbr	0.0	22.90	3.58 (10)	568340
1	cubic	0.0	19.50	4.04 (10)	68051
8	bbr	0.0	47.96	2.43 (10)	300157
8	cubic	0.0	30.64	7.35 (10)	49778
8	bbr	12.0	50.58	2.21 (10)	302178
8	cubic	12.0	44.08	3.58 (10)	61393

Things to note:

- Throughput is slightly better with BBR on this path
- Results are more consistent for BBR (stddev lower) for 8 stream tests
- Pacing helps with parallel CUBIC flows
- BBR typically has about 10x more retransmits than CUBIC

Cubic vs BBRv3 Ibl-dev-dtn1.es.net to pygrid-sonar2.lancs.ac.uk (4×10G, RTT = 147ms)

Streams	CC Alg	Pacing (Gbps)	Tput (Gbps)	Stddev (nvals)	RXMTs
1	bbr	0.0	5.61	0.84 (6)	19721
1	cubic	0.0	2.60	1.18 (6)	4966
8	bbr	0.0	20.26	0.90 (5)	525351
8	cubic	0.0	8.34	0.73 (5)	112758
8	bbr	11.0	18.19	1.32 (5)	685559
8	cubic	11.0	8.46	2.82 (6)	89142

Things to note:

- Throughput is considerably better with BBR
- Low throughput due to receive host TCP window limited

Packet Spacing Histograms

BBR vs Cubic, with and without pacing

Q: Which CC Algorithm will do better with smaller router/switch buffers?

Packet gap histogram on send host: Cubic vs BBRv3, Unpaced vs Paced

Notes on Previous Slide

- pacing for these tests 10G
- tcpdump -j adapter_unsynced
 -time-stamp-precision nano
- BBR unpaced is similar to CUBIC paced
- BBR packet gaps are larger than CUBIC on the send host
- fq-rate and tc seem to be equivalent
- Pacing everywhere might be a good solution until BBR is everywhere?
- More testing is needed

Complications for Pacing Testing

- TSO and LRO are routinely used in modern systems
 - Significantly muddles the water when doing testing
 - Difficult to eliminate bursts completely
 - Pacing will always be imperfect
 - Does this matter?
- BBR takes TSO and LRO behavior into account
 - Perhaps it's OK to always have some burstiness?
- HighTouch has been very valuable
- There is more testing to be done

Conclusions

- These results are preliminary: more testing needed
- Unpaced BBR seems to be similar to CUBIC paced
 - BBR has pacing built in
- BBR helps on some paths
 - Only minor improvements over CUBIC on clean paths with large buffered devices
 - Need to find paths will small buffered devices to really see improvements
 - If you have a perfSONAR host behind a smaller buffer switch let us know
- Detailed analysis of pacing behavior is difficult: more work needed

BERKELEY LAB

Thanks!

Eli Dart dart@es.net

https://my.es.net/ https://www.es.net/ https://fasterdata.es.net/