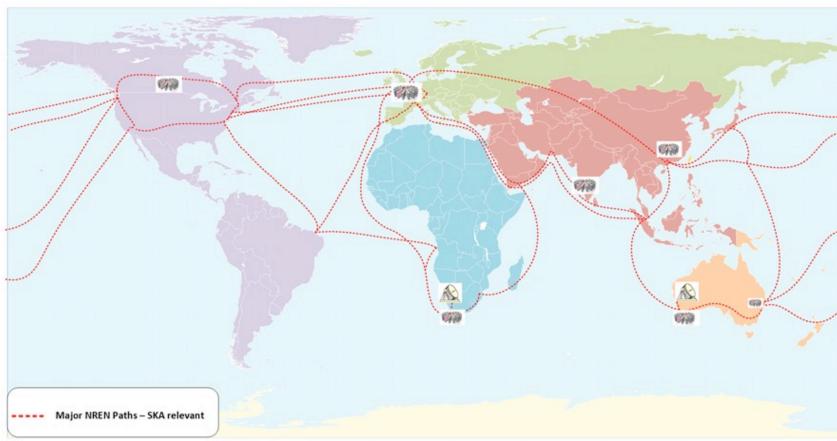


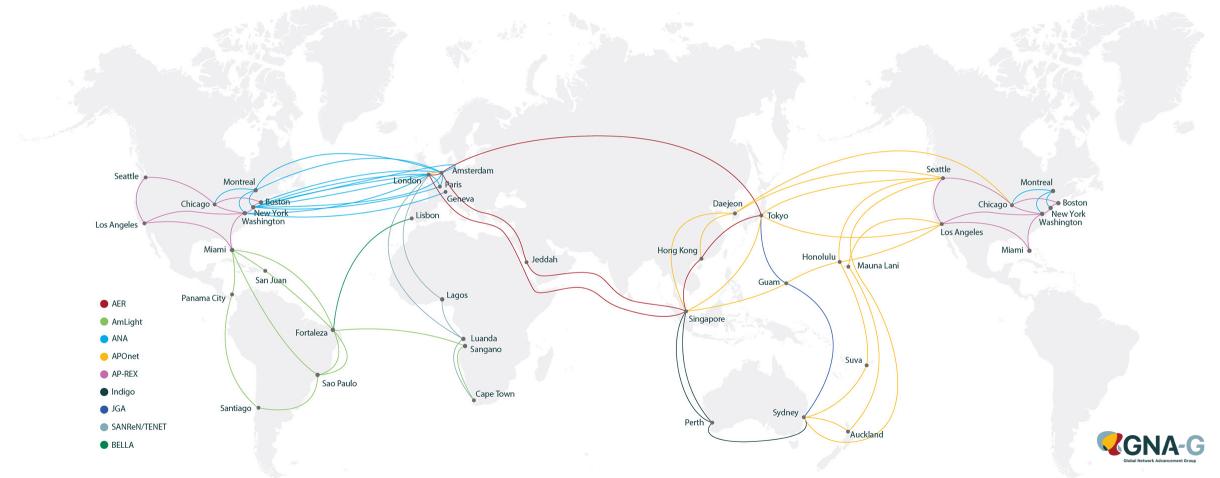
Technical requirements and Low level data moving tests for SRCnet network.

Richard Hughes-Jones GEANT Jonathan Churchill RAL

LHCONE Meeting – Catania 9 April 2024

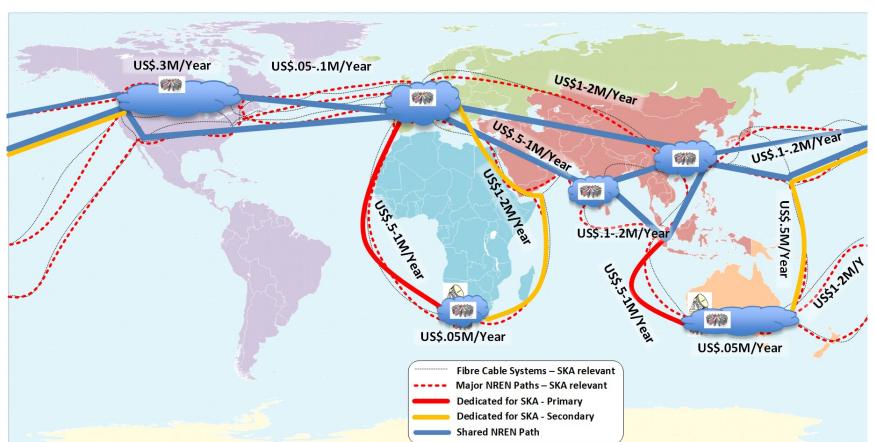
SKA Phase1 Data Flows




Fibre and Cable Systems and major NREN paths

- The 2020 intercontinental fibre cable systems used by the international research and education community.
- Document produced for the SKA Regional Centres Coordination Group John Nicholls (AARNet) & Richard Hughes-Jones (GÉANT)

Global Research and Education Network GREN


https://www.gna-g.net/resources/maps/

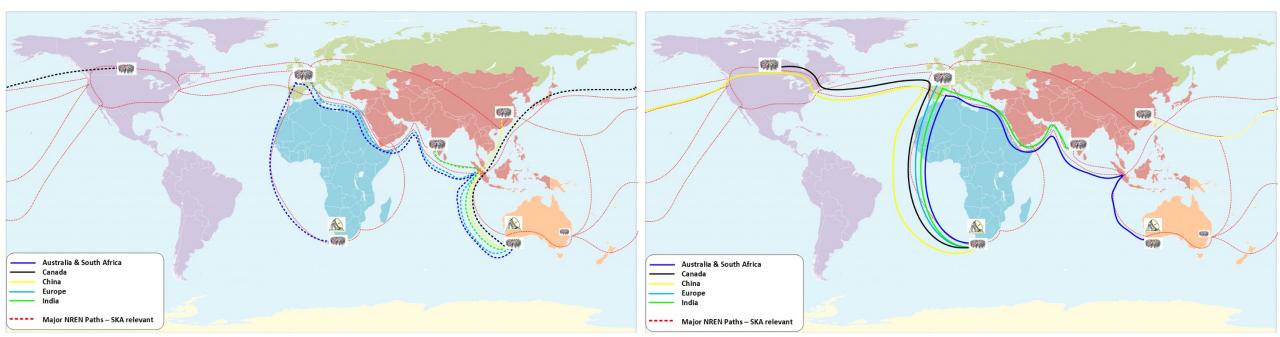
Global Network & Paths of Interest to SKA

- Dedicated 100 Gigabit Primary paths (red lines) & Backup paths (yellow lines) from both telescopes
- Use of the academic network infrastructure shared between user communities (blue lines).
- 1 PetaByte/day pushed by SDP from each Telescope ightarrow 100 Gigabit/s for the Full Design
- Costs based on 10 to 15 year IRU per 100 Gbit circuit projected to 2025 prices

- Primary 100G bandwidth USD 1.7 2.3 M per year.
- Backup 100G bandwidth
 USD 2.3 3.3 M per year
 When required.
- SKAO agreed to funding the operational costs of these paths.
- Funding for the shared network infrastructure follows that for other science communities.

Main Data Flows

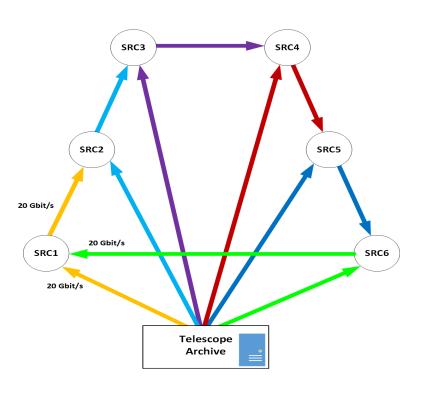
- From the Telescopes to the SRCs for the 1st replica of Observatory Data Products (ODP).
- Between SRCs to create the 2nd replica of the ODPs
- Between SRCs to create a 2nd replica of the Advanced Data Products (ADP).

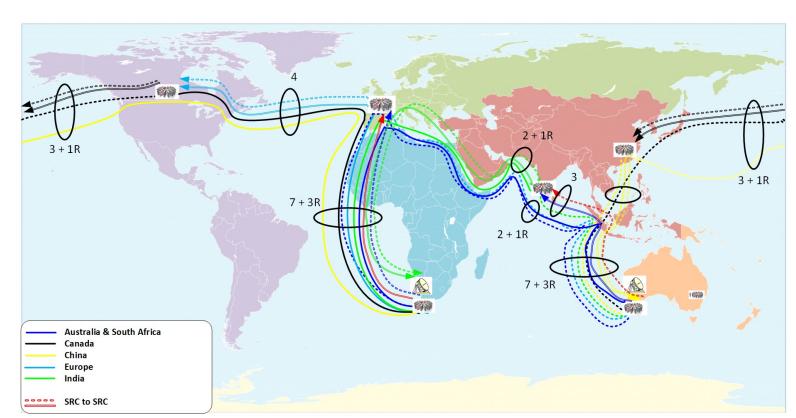

• In terms of storage there will also be an archive copy of the ODPs and ADPs stored at the SRCs.

Global Paths of the Data Flows Pushed to the SRC for the 1st Replica

- Five flows on the submarine cable from Perth to Singapore .
- Then join the general purpose routed IP academic network.
- Single flows on the routes to Canada, China and India, Australia is local, and two 20 Gbit/s flows would be carried to London to reach SRCs in Europe and South Africa.
- Five flows on the submarine cable from Cape Town to London.
- Then join the general purpose routed IP academic network.
- Different submarine cables used to reach India and Australia, Europe is local, and two 20 Gbit/s flows cross the Atlantic to SRC in Canada and China.

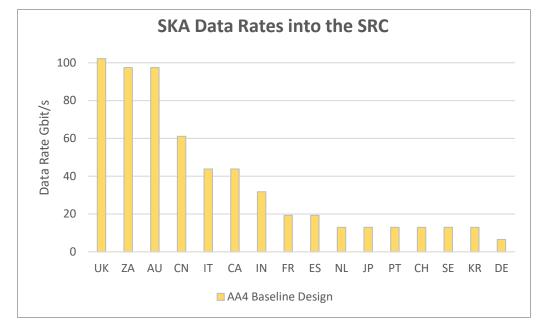
SKA1-MID South Africa


SKA1-LOW Australia

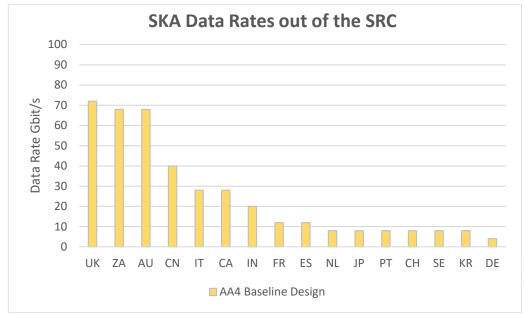


Global Data Flows if the SRC Re-distribute data 2nd Replica

- Each SRC accepts its fraction of the Observatory Data Products and re-distributes to another SRC.
- SRC has 20 Gbit/s flow from the telescope & a second continuous 20 Gbit/s flow from another SRC.
- Each SRC sends out a 20 Gbit/s flow.
- Makes substantial use of the shared academic network.

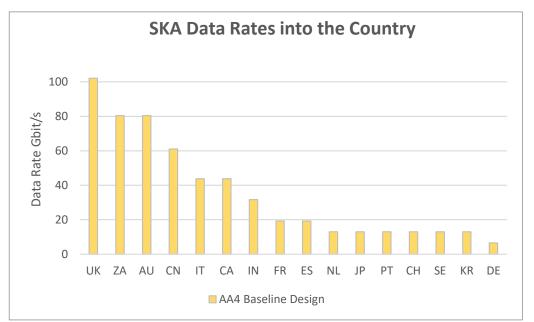

Data Distribution Across Countries Based on a Fair-share Model

- Allocate data to the SKA countries in proportion to their funding for SKA construction.
- Data flows included:
 - Movement of ODPs from telescope to SRC for the 1st replica
 - Movement of ODPs between SRCs for the 2nd replica
 - Movement of ADPs between SRCs to create the 2nd replica
- Does not consider :
 - If compute architecture at a site matches the data product requirement.
 - A data cube will need to be at one location.
 - Amount of storage available at a site.

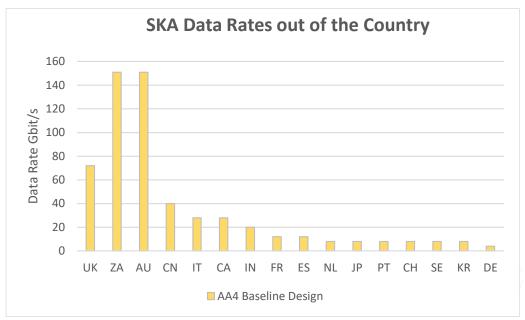


SRC Data Rates For AA4 Baseline Design

- AA4 (Low 100 Gbit/s Mid 100 Gbit/s)
 - Almost 100 Gbit/s into UK ZA AU
 - Rates into many countries 10 20 Gbit/s.



- Model gives an indication.
 - Likely that SRCs will need at least 20 Gbit/s for SKA data.
 - Tuned Long-haul disk-to-disk transfers ~5-6 Gbit/s
 - With plan for multiple concurrent file transfers.


Country Data Rates For AA4 Baseline Design

- AA4 (Low 100 Gbit/s Mid 100 Gbit/s)
 - Almost 100 Gbit/s into UK
 - Telescopes to SRC in a host countries on local NREN.
 - The ~150 Gbit/s out of the host countries includes ODPs from the telescopes.

- ODPs to Europe ~40% (19% to the UK)
- Expect significant traffic between AU & ZA
- A data cube will need to be at one location.

Data Rates for Array Configurations for AA2, AA*, AA4 (Design baseline)

- Based on data from "SKAO staged delivery, array assemblies and layouts" SKAO-TEL-0002299 dated Nov 2023
- Considered a plausible scenario using the following types of observations:

Low

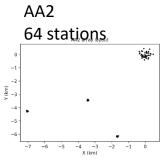
- Image cube. Size dependent on the max. baseline length and the sensitivity on number of stations
 - AA* baselines similar, sensitivity denominates
- Calibrated smoothed visibility data (EoR). Size is dependent on the number of baselines

Mid

 Image cube. Size dependent on the max. baseline length and the sensitivity on number dishes

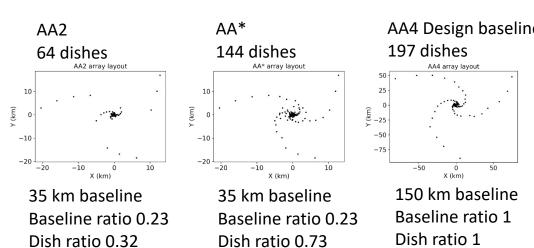
A Plausible Scenario for Data Rates from the Telescopes

AA4 Design baseline


512 stations

70 km baseline

Baseline ratio 1


Station ratio 1

Low

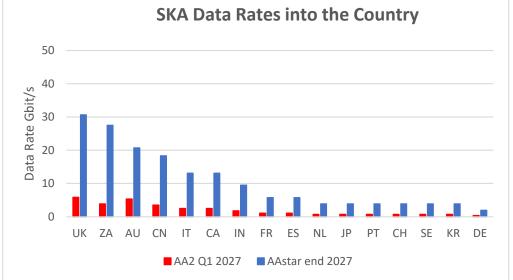
8 km baseline Baseline ratio 0.11 Station ratio 0.125

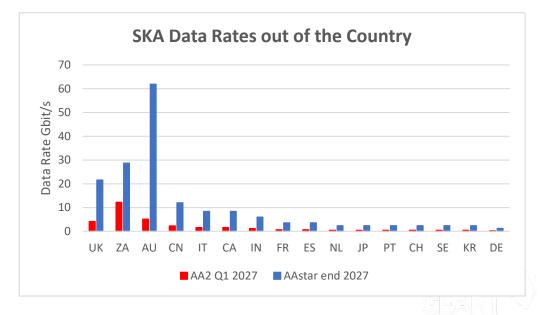
Mid

AA*

307 stations

70 km baseline

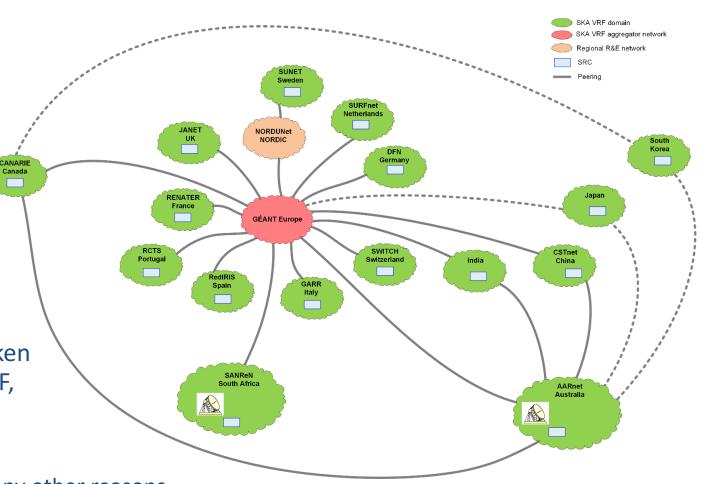

Baseline ratio 1 Station ratio 0.6


		AA2	AA*	AA4
				(Design baseline)
	Timescale Low	Oct 2026	Jan 2028	After 2030?
	Low data rate	2-5	50	100
	Gbit/s			
	Timescale Mid	Mar 2027	Dec 2027	After 2030?
ne	Mid data rate	10	10	100
	Gbit/			

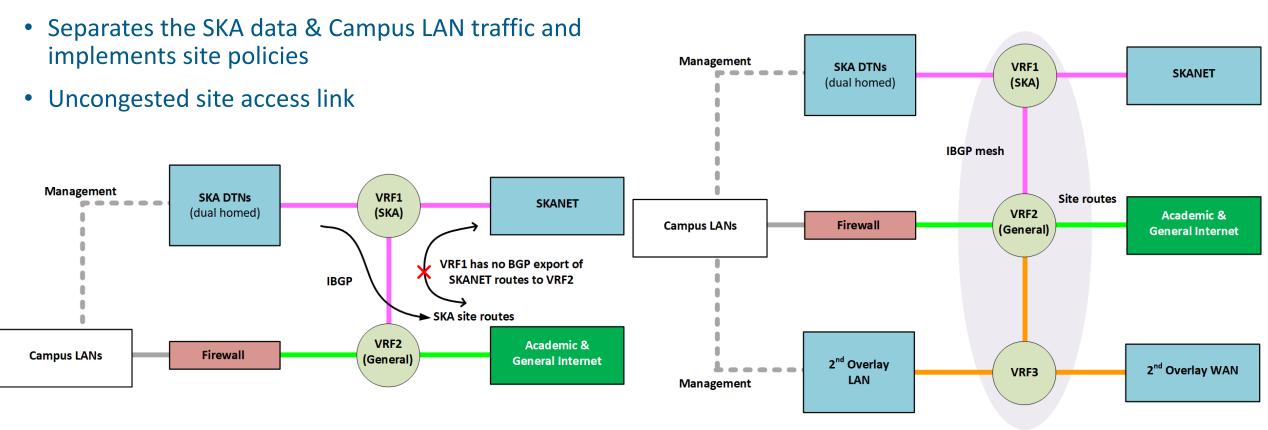
These numbers are indicative but not endorsed by SKAO. A document with more robust estimation of rates Expected Summer 2024

Country Data Rates

- Used the estimated bandwidth requirements for the different AAs.
- AA2 (Low 1.5 Gbit/s Mid 10 Gbit/s)
 - All countries have low rates.
 - Best to plan for disk-to-disk site transfers with each flow 5 – 10 Gbit/s. (~1GByte/s)
- AA* (Low 50 Gbit/s Mid 10 Gbit/s)
 - 30 Gbit/s into the SRCs of UK ZA AU.
 - Rates into many countries 5-20 Gbit/s.
 - Data rate out of AU ~60 Gbit/s (inter-continental).
- Summary from Fair share Model gives an indication :
 - Likely that most SRCs will need ~ 10-20 Gbit/s for SKA data.
 - Tuned Long-haul single disk-to-disk transfers ~5-6 Gbit/s
 -and plan for multiple concurrent file transfers.
 - ODPs to Europe ~40% (19% to the UK)
 - Expect significant traffic between AU & ZA


SKA-NREN Forum Technical Working Group Global Network Connectivity & Architecture for SKA

- All Telescope to SRC and SRC to SRC data transfer traffic to operate on VRF peered over the shared academic network.
 - Building on the experience with LHCONE and the AENEAS project.
- For high performance data transfers the data transfer node servers (DTN's /gateways) should be located in a site "Science DMZ" with ACLs for site policy.
- All SRCnet data transfer traffic, at least, to use IPv6 only.
- The DTN nodes / gateways should be tuned for high RTT latency data transfers
 - kernel parameters defining maximum TCP buffer size
 - Queueing discipline
 - NIC ring buffer size
- Use larger MTU sizes. Specifically: 9000 byte Jumbo frames.
- For network monitoring SRCnet deploy a mesh of "perfSONAR" nodes with at least one perfSonar system per SRC site. (https://www.perfsonar.net)


Global Network Connectivity for SKA

- Global VRF based overlay with peering linked over the shared academic network.
 - Majority of SRCs are <u>not</u> also WLCG/LHCONE members
- Easier for NRENs to implement the routing, policies and monitoring
 - Use specific paths & routes
- Layer 3 routing provides isolation
 - from other users
 - any network configuration issues
 - strictly limits broadcast storms
- Layer 3 will re-route traffic as long as there is an alternative network path
 - Eg Cable break on primary from ZA/ AUS
- Configuration actions have to be undertaken by the NREN and a Site to join the SKA VRF, which provides an extra layer of security.
- Some sites will need IPv6 to join
 - But this is generally "a good thing" for many other reasons

Network Considerations for a Site DMZ and Tuned DTNs

- Need for high performance Data Transport Node / Gateway hardware
 - Tuned for RTT ~300 ms
 - Network disk transfer rate ~20 Gbit/s (Typical disk-to-disk transfer rate ~6 Gbit/s)
- Flexible but secure ACLs give a high performance DMZ connected to the VRF

17

GEANT.ORG

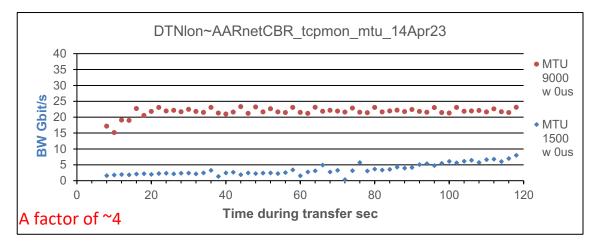
Use of Jumbo Frames

- Makes a big improvement to data transfers:
 - Throughput \geq * 2 (~3.5 to Aus)
 - Reduces recovery time
 - Transfers more stable and less re-transmitted packets
- Concern about mixing Jumbo & 1500 Byte MTUs
- Tests show 9000 to 1500 Byte MTU transfers do work for TCP.
- Care needed when configuring sites & PCs:
 - Path MTU discovery (PMTUD ICMP) needs to work
 - net.ipv4.tcp_mtu_probing=1 for IPv4

Network test data

•Iperf (Raul from Jisc)

Source	Destination	RTT	9000	1500
SURF (NL)	RNP (Brazil)	100ms	31 Gbit/s	20 Gbit/s
Jisc (London)	BNL (USA)	100ms	14 Gbit/s	6 Gbit/s
SURF (NL)	Jisc (London)	7.2 ms	23 Gbit/s	6 Gbit/s


•Tcpmon (Richard Hughes-Jones - Geant)

Source	Destination	RTT	9000	1500
London	Cambridge	3ms	37 Gbit/s	15.8 Gbit/s
London	AARnet	262ms	21 Gbit/s	3.4 Gbit/s

Chris Walker LHCOPN-LHCONE April 2023

Jisc

Throughput Europe to Australia RTT 262 ms

Provisional summary of requirements

- Most SRCs will need ~ 10-20 Gbit/s for AA4 SKA data (<< less until after 2030).
 - Tuned Long-haul concurrent disk-to-disk transfers ~5-6 Gbit/s each
 - ODPs to Europe ~40% (19% to the UK) of traffic.
 - Expect significant traffic between AU & ZA
- All Telescope to SRC, and SRC to SRC, data transfer traffic over a peered VRF.
- Data transfer node servers (DTN's/Gateways) should be in a site "Science DMZ".
- The DTN/Gateway nodes tuned for high RTT (300mS) latency data transfers.
- All SRCnet data transfer traffic, at least, to use IPv6 only.
- Use larger (9000 byte) MTU sizes / Jumbo frames.
- Monitor the network with a mesh of "perfSONAR" nodes for SRCnet.

Implement for SRCnet 0.1. Avoid disruption. Provide the infrastructure for smooth growth.

Questions?

Advanced European Network of for Astronomy with the SKA

