
A Large Ion Collider Experiment

System tools for payload control

1

Marta Bertran Ferrer
marta.bertran.ferrer@cern.ch

Alice T1/T2 Workshop
16-18 April 2024

Marta Bertran Ferrer, System resources management

Current situation on Grid worker nodes
A Large Ion Collider Experiment

2

● Resource overconsumption is a recurrent issue in the Grid landscape
○ Memory and CPU are our main concerns
○ Leads to job interference and termination

● Grid heterogeneity on available resources and constraining policies
○ Custom configurations and tools per site
○ Some jobs can only complete with big resource allocations / extendable limits

● Take into account site policies and perform custom actions to maximise
efficient use of resources

○ Imposing usage limits once the job starts (static and uniform)
○ Letting jobs freely expand and act when reaching site-specific policies (dynamic)

Marta Bertran Ferrer, System resources management

● Many sites do not constraint CPU allocation
○ Leads to unpredictable execution time, even for the same CPU type and payload
○ As a consequence, the turnaround time varies considerably and may lead to job termination

● Special concern when running in whole-node scheduling
○ The resources must be allocated as requested by the job

CPU control strategies
A Large Ion Collider Experiment

3
Marta Bertran Ferrer, System resources management

CPU pinning
A Large Ion Collider Experiment

4

● CPU pinning using taskset is already in production running in a set of sites
○ Available tool in all linux flavors, CentOS7 included

● Core selection based on NUMA architecture of the executing node to promote data locality

● In sites with fixed-size slots, JA pinning coordination by communicating with Central Services
○ As a best-effort attempt to avoid co-pinned cores

● Presently CPU pinning is using a static approach
○ CPU usage is always kept under the user requested number of CPU cores
○ Ensuring fairness with other co-executing payloads
○ In whole-node or multi-core scenarios, unassigned cores are shared between running

workflows. If slot is not full, job efficiencies can be higher than 100%

● No negative impact on CPU efficiency of well-behaved jobs has been observed

Marta Bertran Ferrer, System resources management

Using cgroups v2 for configuring limits on CPU
● cgroups v2 to control workflow resource allowance

○ With different controllers to manage different resources (CPU, IO,
memory, PIDs…)

● Not supported by all operating systems, need to satisfy
multiple requirements (configuration and versions)

○ Grid current default OS (CentOS 7) does not support cgroups v2
■ Expected growth this year when 7 reaches EoL, pushing sites to use

RHEL 9 for a complete feature set in cgroups v2
○ Few sites running with OSs that support it (+ has to be explicitly enabled

by site admins)

● Lets unprivileged users divide the granted resources into
new cgroups

○ Allocation of pre-defined portion of the original resources to workflows

A Large Ion Collider Experiment

5
Marta Bertran Ferrer, System resources management

Distribution of OS versions
among Grid hosts

RHEL7
53.1%

RHEL8
3.5%

RHEL9
43.4%

Cgroups v2 integration in JAliEn
● Most popular batch systems (Slurm and HTCondor) can already enable rootless

fragmentation into smaller sub-slots
○ HTCondor built-in feature since version 23
○ Plugin available for Slurm implemented for this use-case
○ Each of the running jobs will have its own constraints

● Batch queue sets a general cgroup(v2) to the granted slot
○ Root cgroup, big box with general limits
○ Its limits and custom configurations are set by site admins

● Depending on batch allocation will use different CPU limiting options:
○ Slot of limited amount of cores: Usage of cpu.max for allocating a maximum bandwidth limit

proportional to the job’s requested cores
○ Whole-node scenarios: Usage of cpuset.cpus for exploiting reduced memory access latency

with explicit core selection

■ The whole machine is occupied by our processes - full visibility of the pinning status
■ Profit from the already-implemented core-selection given the NUMA architecture

A Large Ion Collider Experiment

6
Marta Bertran Ferrer, System resources management

CPU constraining in whole node scenarios
A Large Ion Collider Experiment

7
Marta Bertran Ferrer, System resources management

In whole node scenarios we can:
● Assign jobs to all the cores of one NUMA domain using cgroups v2 (cpuset.cpus) or

taskset, depending on the machine’s availability

● If running with cgroups v2, imit their CPU bandwidth tuning cpu.max

NUMA Node L#0

Core L#0
P#0

P#16

Level 3

P#1

P#17

P#7

P#23

x8 total

NUMA Node L#1

Level 3

x8 total

P#8

P#24

P#9

P#25

L1 / L2L1 / L2 L1 / L2 L1 / L2L1 / L2 L1 / L2

Core L#1 Core L#7 Core L#8 Core L#9 Core L#15

P#31

P#15

Flexibility of allocations
Exploiting memory locality
Promote fairness among co-executors

Memory - Site configurations landscape
A Large Ion Collider Experiment

8

● Heterogeneous memory capacity and memory management on the Grid
○ Sites provide minimum 2GB RAM per core, more if available
○ Machine memory usage fluctuates, dynamically increasing/reducing the available RAM

● Allocation limits on memory resources bound by:
○ Physical machine specs
○ Constraining policies applied to global machine, batch system slots or by kernel OOM

Marta Bertran Ferrer, System resources management

● memory.low: if cgroup and all its descendants are below this threshold, the
cgroup's memory won't be reclaimed (best-effort guarantee)

○ Initial idea: Guaranteeing that our jobs are granted (at least) 2GB/core

● Experimenting a test scenario by setting hard memory limit in parent cgroup and
memory.low in the descendants, running a set of processes each

○ Main observation: Instead of the global cgroup memory, the individual processes
memory usage is the factor that triggers the payload termination

■ memory.low limit is not taken into account when used together with memory.max on parent
cgroup

■ Once the memory.max limit is reached, the process that consumes the most is killed
As the relative size of it is ignored (number of cores), the wrong process might be picked up

First approach: Using cgroups v2 for limiting memory
A Large Ion Collider Experiment

9
Marta Bertran Ferrer, System resources management

First approach: Using cgroups v2 for limiting memory
A Large Ion Collider Experiment

10
Marta Bertran Ferrer, System resources management

Slot hard memory limit
Memory consumption of individual jobs
Memory consumption of payload processes

Job 2

Job 3

Job 1

Job 4

First approach: Using cgroups v2 for limiting memory
A Large Ion Collider Experiment

11
Marta Bertran Ferrer, System resources management

Slot hard memory limit
Memory consumption of individual jobs
Memory consumption of payload processes

Job 2

Job 3

Job 1

Job 4

Job 2

Job 3

Job 1

Job 4

First approach: Using cgroups v2 for limiting memory
A Large Ion Collider Experiment

12
Marta Bertran Ferrer, System resources management

Slot hard memory limit
Memory consumption of individual jobs
Memory consumption of payload processes

Job 2

Job 3

Job 1

Job 4

Job 2

Job 3

Job 1

Job 4

Job 2

Job 3

Job 1

Job 4

● For the moment, we can not use cgroups v2 as we envisioned for constraining jobs
in memory

First approach: Using cgroups v2 for limiting memory
A Large Ion Collider Experiment

13
Marta Bertran Ferrer, System resources management

Slot hard memory limit
Memory consumption of individual jobs
Memory consumption of payload processes

Job 2

Job 3

Job 1

Job 4

Job 2

Job 3

Job 1

Job 4

Job 2

Job 3

Job 1

Job 4

Memory - Site configurations landscape
A Large Ion Collider Experiment

14
Marta Bertran Ferrer, System resources management

Sites might be imposing other
custom constraints or might have
limited memory resources

Killed by JAliEn
@10GB/core

Killed by site

49%
sites

17%
sites

33%
sites

26% hosts

HPC
1% sites

74% hosts

Batch systems

CEs

Number of Computing Elements (inner ring) and Batch
Systems (outer ring) used in the Grid

Direct
submission

Memory - Site configurations landscape

● A consequence of slot memory limitation is the killing of the whole slot
when memory consumption is above a threshold

○ Due to JAliEn sub-partitioning, over-consuming payloads might trigger the killing of
well-behaved co-executors

○ Becomes a bigger problem in a whole-node scenario

● Need a continuous supervision of job memory utilization to anticipate
worker-node payload termination decision

○ Identifying top-offending payloads and proceed to targeted preemption given job priorities
○ Guaranteeing that slot co-executing workflows can continue

A Large Ion Collider Experiment

15
Marta Bertran Ferrer, System resources management

● Sites with sharp kill thresholds - imposing memory
hard limits

○ Very predictable behaviour
○ Perfect candidates for controlled job preemption
○ Need to understand and anticipate all ways of defining them

(configs on machine or different batch system parameters)

● Hosts with no memory limit or soft limit
○ Fluctuating allocation, depending on machine utilization levels
○ Machine status needs to be monitored

A Large Ion Collider Experiment

16

Memory - Site configurations landscape

Marta Bertran Ferrer, System resources management

Memory limiting on Grid hosts

9441
hosts

Slurm /proc
accounting

6%

HTCondor
classad

2%

Cgroups
44%

No explicit
memory limit

48%

Memory limiting on Grid hosts

● Avoid setting too strict memory thresholds
○ 2GB/core might be not enough to run many of our jobs
○ Apart from the 2GB/core minimal requirement, some extra memory is needed to run the

JAliEn agents

● In case physical machines do not have enough memory resources,
advertising less CPU cores is better

○ Increasing the memory/CPU core ratio
○ In whole-node scenarios, JAliEn takes care of advertising less cores in such cases

● Machines with swap memory should not disable swappiness
○ Letting jobs use swap to extend their memory usage allowance

Memory - Configurations to promote job success
A Large Ion Collider Experiment

17
Marta Bertran Ferrer, System resources management

● In whole-node scenarios JAliEn manages all the resources of the
execution machine

○ Allowing custom partitioning and allocation to the running workflows
● Jobs can request a custom amount of memory, to be considered in the

matching process
○ Without the caveat of needing to ask for extra CPU cores (allocated memory proportional to

the core demand)
● Accurate memory demands will potentially lead to less job and system

crashes due to OOM
● The other side of this coin is idling CPU cores

○ The process should weigh efficiency vs importance of payload
○ … and should not dispense from code optimization efforts to use less memory

Memory - Dealing with jobs with high memory demands
A Large Ion Collider Experiment

18
Marta Bertran Ferrer, System resources management

With whole-node scheduling we have a better control of the resources:

● Custom resource partitioning, mainly CPU and memory

● Improved data locality with a NUMA-aware job allocation

● CPU oversubscription to promote efficient resource utilization
○ Running jobs with complementary resource usage patterns in idle CPU cycles

● When run with RHEL 9 OS, rootless partitioning of cgroups v2 slot
○ Apart from NUMA aware scheduling, constraining of CPU bandwidth to prevent job

interference with co-executors
○ Custom allocation settings in memory

Whole-node scheduling
A Large Ion Collider Experiment

19
Marta Bertran Ferrer, System resources management

