Introduction to KISTI National Supercomputing Infrastructure

Taeyoung Hong

Supercomputing Infrastructure Center, Division of National Supercomputing, KISTI

✓ KISTI has served a national supercomputing center of S. Korea, providing both high performance computing and storage resources to Korean researchers and engineers since 1988.

KIST

- ✓ Starting with Cray-2S, Korea's first supercomputer, HPC system have been continuously upgraded on the regular basis. Currently, we are operating our 5th supercomputer - NURION
- ✓ NURION was ranked at the 11th in Top500 (2018.11) and its rank now declined to 61th (2023.11).

- ✓ In Dec. 2018 NURION system started to put in production.
- It provides 25.7 PFlops computing power, 33.88 PB storage capacity with 12.3 GB/s interconnect network bandwidth
- 128 Racks of Computing Components
 - ✓ 8 rows, with 16 Cabinets in each
 - ☑ 8,305 KNL Compute Nodes
 - 132 Xeon Skylake CPU Nodes
- 12 Racks of DDN Storage
 - 20 PB of Scratch Storage
 - ✓ 1 PB of Home and App Storage
 - ✓ 0.8 PB Burst Buffer
- ✓TS-4500 Tape Library
 - ✓10PB / 1,700 Media
- Interconnection Network
 - ✓ Intel Omni-Path Architecture (100Gbps)

KISTI-5 Specification

KISTI-5 Specification

Interconnect

OPA@12.3GB/s, Fat-Tree, 50% Blocking

✓ Intel OPA interconnect: 274x 48-port OPA edge switches, 8 x 768-port OPA core switches

✓ Bandwidth: 12.3 GB/s, Bisectional Bandwidth: 27 TB/s

 $\checkmark 10^{-16}$ BER (Bit Error Rate), Adaptive routing

KISTI-5 Specification

Storage

20PB PFS@300GB/s, 0.8PB Burst Buffer@800GB/s, 10PB Archiving@10GB/s

✓ Global Scratch: 20PB, 300GB/s, Home and Application : 1PB (Scratch is one of the largest single shared PFS in 2018)
✓ NVMe Burst Buffer: 0.8PB, 800GB/s, Cray TSMSF and IBM TS4500 (10PB) (Storage N/W is non-blocking)

Power Supply Equipment

- 20MW dedicated dual power lines from 2 different power substations to KISTI facility
- 11.4MW UPS for at least 20 minutes of backup power for computing/storage system
- 5MVA diesel power generators for cooling and power distribution units during power outages

Mechanical Cooling Equipment

- Chilled water-cooled systems with rear doors
- PUE(Power Usage Effectiveness) reduced from 1.58 (KISTI-4) to 1.34 (KISTI-5) by applying economizer(water side), free cooling chiller, and dynamic power management of chillers

depending on system load

Fig. 3: Energy consumption and PUE of the Nurion system in 2019.

System Software Optimization

- For speed-up of provisioning OSes into diskless compute nodes, 132 Skylake nodes are configured as relay servers used in rebooting on periodic maintenance window
- The ethernet network of the whole system is split into 16 VLANs to avoid MAC flooding due to the limit of the MAC entries of ethernet switches
- The delay of start-up and run time of MPI jobs due to PBS integration with MPI has been enhanced over time

KISTI SINCE 1962

☑ Based on GPU and next-generation hardware (official service in July 2019)

- 65 servers, **260 GPUs (140 V100, 120 A100),** total **3.53PFlops**
- +36 Nvidia H100 or AMD MI300 GPUs will be added in 2024
- ✓ Focused on AI/DL R&D and MD/DFT fields showing good performance acceleration from GPUs
- ✓ Filesystem sharing support with NUIRON Lustre PFS
- ✓ Supported parallel AI execution (Horovod, Pytorch DDP, TF Distributed ...)
- Supported other development environment (Conda, Docker/Singularity, Module ...)
- ✓ To be expanded to +10 PFlops (FP64) by annual upgrade until 2025

To provide users with easy and secure access to a range of development tools and services for HPC and ML/DL, Big data analysis

KISTI

- Supports Web terminal (WeTTY), Data Management (File Run), Jupyter Lab, RStudio, VS code, Remote Desktop (VNC), Batch Job Launch & Management(PBS/Slurm)
- SSO (Single-Sign On), Load Balancer, Secure Ingress Gateway, and Kubernetes

Open call based User Support Program, 'R&D innovation Support Projects' (Free of Charge, 90% of Resources)

How to apply for R&D Innovation Support Projects

The call for applications will be posted on this website. Submit your proposals for the program application on the page.

STEP1 Announce contest and receive applications	STEP2 STEP3 Evaluation Selection	STEP4 Resource and Technical Support
	Grand Challenge	Creative research
Target	Researchers and associations need 5PF or higher computing power to solve massive scientific problems	performing R&D projects in KISTI supercomputers
Requirements	Computational problems have to used 5PF or larger at once time	Doctoral degree and Korean nationality are required
Resources/period	Dedicated resources and flexible support in three months at maximum	Shared resources in one year, no additional resources can be added

Annual Subscription based paid support Program (Pre-paid, Production-cost level price policy, 10% of Resources)

- Researchers or institutions need Resources without going through expert evaluation to protect core research contents or corporate te chnology
- Researchers or institutions want to use computational resources exclusively for a certain period of time for the nature of their research such as mission-critical applications

KISTI-5 Operation and Service

✓ Average availability 99.4%, average usage rate 74% (As of 2019.01~ 2023.12)

✓ From Dec. 2018 up to now 11 million user jobs have executed

Nurion System Production Status

- +300M node-hours provided and +11M user jobs have run from Dec 2018 to now.
- Average job size of all user jobs in 2019 is 631CPU cores(arithmetic average), 699(jobs' wall-time weighted average) and 34,313(jobs' CPUs x wall-time weighted average)

- ✓ 189 institutions and 4,641 users nationwide have used KISTI-5 and Neuron in 2022
- Supported HPC resources and services to various institutions such as universities, research institutes, industries, and government agencies nationwide.

User Support and R&D Collaboration

The world largest scale simulation of atomic structure of semiconductor

- Matrixization and 3D domain decomposition
- Electronic structure of a silicon box consisting of 400 million atoms simulated (the previous record: 51million atoms)

The parallelization of Astrophysics code(RAMSES) with 7.5PFlops

- Break-through the limited scalability of cosmological numerical simulation (RAMSES)
- World largest scale(1kpcs) cosmology simulation by using 2,500 nodes (7.5PF)

The world class parallelization of fluid analysis of turbulence

Optimization/parallelization of CFD in-house code (DNL-TBL) to scale to 2,500 compute nodes

Joint development of quantum chemistry simulation software

- Joint development of Quantum Chemistry software and it's optimization and parallelization
- > The development of AI based electronic structure code

- A system with 600PF (FP64 matrix) that can simultaneously respond to huge computational demands of HPC and AI communities
- The beta service will be started in 2025

System Diagram

(Resource Allocation) National Strategic R&D Sector 50%, Public/Social Sector 10%, Industries 20%, National Shared Utilization 20%

(Application Area) Computational Science 70%, AI 30%

Reducing both the time and cost of R&D through more sophisticated and faster simulations & AI by utilizing HPC

KISTI

